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SUMMARY

The objective of this research program is to extend the recent advances
in robust control system design of multivariable systems to sensor failure
detection, isolation, and accommodation (DIA), and estimator design. This
effort provides analysis tools to quantify the trade-off between performance
robustness and DIA sensitivity, which are to be used to achieve higher levels
of performance robustness for given levels of DIA sensitivity. An
innovations-based DIA scheme is used. Estimators, which depend upon a model
of the process and process inputs and outputs, are used to generate these
innovations. Thresholds used to determine failure detection are computed
based on bounds on modeling errors, noise properties, and the class of
failures. The applicability of the newly developed tools are demonstrated on
a multivariable aircraft turbojet engine example.

A new concept called the threshold selector was developed under this
nroqgram. It raprecants a significant and innovative tool for the analysis and
synthesis of DIA algorithms. Analytical results were obtained for the SISO
case to compute optimal thresholds and to determine the size of minimum

detectable failures, and a computer-aided technigue was developed for the
multivariable case.

The estimators were made robust by introduction of an internal model and

by frequency shaping. The internal model provides asymptotically unbiased

filter estimates. The incorporation of frequency shaping of the LQG cost
functional modifies the estimator design to make it suitable for sensor
failure DIA.

The results are compared with previous studies which used thresholds that
were selected empirically. Comparison of these two techniques on a nonlinear
dynamic engine simulation shows improved performance of the new method
compared to previous techniques.
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1. INTRODUCTION

The use of analytical redundancy (as opposed to hardware redundancy) for
actuator/sensor failure detection, isolation, and accommodation (DIA) has been
an active area of research during the last decade. Failure detection is the

process of determining if a maifunction has occurred in a system. Failures in
a system are detectable if the outputs following the failure are statistically
different from the outputs prior to the failure. Failure detection implies
that a no-failure condition can be differentiated from a failure condition.

It does not imply that in the case of a failure, various failurés can be dif-
ferentiated from each other. Failure isolation is the process of differenti-
ating between various failures which may occur in a system. Any two failures
may be differentiated from each other if the outputs following them are sta-
tistically different. In general, more complex data processing is required
for isolation than for detection. Failure accommodation refers to the substi-

tution of a synthesized value for the faulty sensor's output.

The various techniques that have bdeen Jeveloped For DIA c¢an jenerally Je
thought of as belonging to three categories: failure-sensitive filters,
multiple-hypothesis filter detectors, and innovations-based detection sys-
tems. A survey of various techniques up to 1975 can be found in Ref. 1 and
references to the more recent work is contained.in Refs. 2, 3, and 27. In
Ref. 1, the issue of robustness of various techniques was pointed out as an
open area for research. However, 1ittle has been done in the way of robust-
ness analysis for various failure detection schemes. This study seems to be
the first to address this important issue directly. It presents a systematic
solution based on recent robustness analysis and design techniques [14] devel-
oped for multivariable systems. For example, Clark [2] points out the jmpor-
tance of robustness but his schemes have no guaranteed robustness properties.
Leininger [4] addresses the problem of parameter uncertainty (D.C. mismatch),
but does not come up with a remedy to guarantee robustness. The use of adap-
tivity for failure detection was discussed in a recent report [5]. However,
these techniques are known to have undesirable robustness properties unless
high-frequency unmodeled dynamics are taken into account.



This report addresses the important issue of robustness of sensor failure
detection, isolation, and accommodation (DIA) techniques. The approach is

based on extensions of robust control and estimation techniques and unifies
varifous DIA methods. It is important to note that the method has been made
practical so as to make an immediate impact on applied technology.

1.1 PROBLEM STATEMENT !

The overall problem addressed in this report is the design of a robust,
multivariable control system for a jet engine. A typical block diagram of
such a system is shown in Figure 1.1. The blocks in the forward loop -- the
actuators, plant dynamics, and sensors -- constitute the system. The blocks
in the feedback system -- the control law, DIA logic, and the state estimator
contain the subsystems which are to be designed. The design objective,
ideally, is to select the proper configuration of these feedback subsystems
such that the closed-Toop system exhibits performance robustness with respect
to system uncertainties and sensor failures.

In this study, the control law obtained from Refs. 5 and 7 was used and
only the DIA subsystem was designed. In general, a comprehensive design tech-
nique would aliso consider the design of the control law as well.

Performance robustness requirements can be stated as tolerances on:

(P1) asymptotic behavior, e.g., steady-state command following and
disturbance rejection; and

(P2) transient behavior, e.q., speed of response, damping, over-
shoot, etc.

(P3) detection and isolation sensitivity, e.g. ability and speed of
correctly detecting a sensor failure.

Uncertainties in the system are caused by: .

(UT) uncertain parameter values in the models of the actuators,
plant dynamics, and sensors;

(U2) unmodeled dynamics, e.g., the effect of neglecting high-
frequency phenomena, neglecting nonlinearities, and
intentional reduced-order modeling;

oo
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(U3) sensor failures of a known type, e.g., slow drift in a sensor
bias;

(U4) DIA reconfiguration of the estimator and/or control law when
the DIA presumes a sensor failure; and

(U5) wuncertain external signals, e.g., sensor noise and

disturbances.

Model uncertainties of the type in (U1) affect the steady-state
(asymptotic) behavior and are the predominant cause of estimator bias and
steady-state requlation errors. Those of the type in (U2) typically have a
greater effect at higher frequencies and show up in the transient response as
(possibly) undesirable behavior. A primary goal of this effort is to quantify
the effect of these uncertainties (U1-U5) on DIA system performance and
provide a design approach for improving DIA performance (P1-P3).

1.2 CONTRIBUTIONS

The general contribution of this research has been the extension of
recent advances in robust control system design to sensor DIA and estimator
design. The specific conthibutions ire:

- analysis tools with which to guantify the trade-off between
performance robustness and 0IA sensitivity;

- design methods which allow higher levels of performance
robustness to be achieved for given levels of DIA sensitivity;

- demonstration of the applicability of these tools using an

aircraft turbine jet engine multivariable control example.

The requirement for these goals is explained with the aid of Figure 1.2.
Plotted (conceptually) are levels of performance robustness against DIA
sensitivity. A trade-off is indicated. As a design becomes more robust, it
becomes less sensitive. Alternately, for a given level of DIA sensitivity,
there is a maximum level of performance robustness achievable within the
estimator and 0IA logic design being applied. There are three curves in
Figure 1.2. The one labeled "current" refers to the current state of the art
ODIA algorithms. The curve Jabeled "robust" refers to the idea of making the
DIA robust. This is the subject of the present study and will result in
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higher levels of performance robustness. The curve labeled "adaptive" points
to the fact that even further improvements in performance may be achievable by

an adaptive scheme. This requires basic research and would be the subject of
future studies.

Curves such as those indicated in Figure 1.2, and more specifically in
Figure 1.3, constitute a powerful design aid. The quantities in these figures
will be defined precisely in the body of the report and these figures are
presented here only to provide a flavor of the results to be discussed.
Figure 1.3(a) shows the threshold, Jth' in an innovations-based DIA scheme
as a function of a moving detection window, v. This threshold is a fixed
Tevel against which some measure of the innovations signal is being compared.
A failure is declared if the measure exceeds the threshold. Figure 1.3(b)
shows the minimum detectable level of failure which is possible for a given
DIA technique. These curves are functions of model error bounds, R.M.S.
noise, and the class of failure signals. Figure 1.3(b) shows that the effect
of different estimator speeds can also be evaluated. The ability to generate
these curves is a powerful synthesis tool.

Plots such as shown in Figure 1.3 provide the means by which to evaluate
design modifications made in search of the proper balance of robustness and
DIA sensitivity. Furthermore, they provide information applicable to
optimizing the search. The sensitivities of the system performance to design
changes are calculated and the effects of critical parameters are identified.

This research has developed the analysis tools required to construct

these curves. In particular:

- a "threshold selector" has been created which quantifies the
effects of uncertainty on DIA performance;

- measures have been derived to quantify the uncertainty and the
performance robustness.

This study has also provided advances to robust estimator design to
achieve higher levels of performance robustness. Specificaily, the

accomplishments are:
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-~ the development of estimators using the "internal model
principle" to achieve asymptotic convergence despite model error;

- the incorporation of frequency weighting in an LQG cost
functional to modify an estimator design to be suitable for
sensor failure DIA.

1.3 BACKGROUND

1.3.1 Previous Programs

Under subcontract to Pratt & Whitney Aircraft (PWA), Systems Control
Technology, Inc. (SCT) conducted two previous studies in the area of sensor
D0IA under NASA contracts NAS3-22481, "Sensor Failure Detection System" and
NAS3-23282, "Sensor Failure Detection for Jet Engines." The present program
is an extension of these studies. The ultimate objective of all these
programs is to provide sensor fail operational control capability while
minimizing the required sensor hardware redundancy.

"Sensor Failure Detection System," NAS3-22481 [8])

The objective of this study was to develop an advanced concept for the
OIA of senscr failures in gas turbine engine control systems. Five concepts
were formulated from advanced techniques for sensor DIA. These concepts were
evaluated by application to a turbofan engine and multivariabie control system
simulation. A simplified version of the simulation was used in the
preliminary screening process to select one of the DIA concepts. This
simplified model was also used for the filter designs in the various DIA

concepts.

A functional diagram of the selected advanced concept is shown in Figure
1.4. A normal mode filter, i.e., a filter designed to use all sensor inputs
with no failures assumed on those inputs, was used to generate the filter
residuals and the estimated measurements. The DIA concept used innovations
from the filter to detect hard failures and used the weighted sum-squared
residuals (WSSR) technique to detect soft failures. Isolation of soft
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failures was accomplished by likelihood ratio (LR) based testing of
innovations from a bank of Kalman filters, each designed with the assumption
of one failed input. Accommodation was accomplished by reconfiquring the
narmal mode filter to eliminate the failed sensor from the inputs to the
filter. The DIA concept is summarized in Table 1.1. The DIA concept selected
was compared against a baseline DIA concept based on the conventional
techniques of parameter synthesis.

Table 1.1

Advanced Concept for Detecting, Isolating, and Accommodating
Sensor Failures

Detection - Innovations testing based on WSSR technigue for soft
fajlure. Innovations testing against thresholds for
hard failures.

Isolation - On-line isolation of hard failures using innovations
testing; off-1ine isolation of soft failures using LR
technique. Both structures employ bank of Kalman
filters.

Accommodation - Reconfiguration and reinitialization of normal mede
filter.

The confiquration of the multivariable control and the components of the
DIA logic used in conjunction with the engine simulation is shown in Figure
1.5. The form of the control law 1s given by

U = up+ CP(zp - ZPb) + CIj‘(zI - ZIb) dt (1.1)

-

where u 1is the input vector [WF AH CIVV RCVV BLC]T, zp is the estimate of
Ehe output vector, [N1 N2 PT4 PT6 FTIT]T, and 21 js a subset of the vector

zp. " denotes the estimates. ub. ZPb’ and zIb are the base point vectors
and Cp and CI are proportional and integral control gain matrices. The
proportional part of the control law provides regulation and the integral part
provides trim for the fan speed (N1) and augmentor pressure (PT6). Note that
the control law uses the estimates for both the proportional and integral
portions.

11
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As a result of this program, the advanced DIA concept was shown to be a
viable DIA technique for application to gas turbine engines. While the
performance of the advanced concept was generally good and its feasibility was
demonstrated, several problem areas were jdentified. These included:

- steady-state and dynamic mismatch of the simplified nonlinear
model;

- steady-state estimate errors with no failures induced;
- instabilities when accommodating failures;

- accommodation inaccuracies;

- missed detections and false alarms; and

- limited coverage on the flight envelope.

The models used in the no-failure filter and the isolation filters
contained modeling errors which contributed to the above problems. The hard
and soft failure-detection thresholds and the soft failure-isolation threshold
were chosen empirically. They encompassed an estimate of model errors, and
estimates of sensor noise and bias errors, and a built-in safety factor.

Since the model errors were large, the thresholds were large and contributed
to missed detections and false alarms and the overall poor detection

performance for very slow drift failures.

wSensor Faillure Detection for Jet Engines,” NAS3-23282 [9]

The objective of this program was to develop refinements to the sensor
failure DIA algorithm (Figure 1.4) developed under NASA Contract NAS3-22481.
These refinements included:

- improvement of the steady-state accuracy of the simplified model
of the engine;

- improvement of the dynamic characteristics of the simplified
mode] to be comparable with the nonlinear thermodynamic
simutlation;

- refinements to the DIA algorithm to be compatible with the
improved model;

13



- elimination of the steady-state errors with no sensor failures
caused by biased filter estimates;:

- accommodation inaccuracies in case of failure detection and
isolation;

- missed failure detections and false alarms.

Three revisions were developed and evaluated to address the above
improvements. A detailed, nonlinear thermodynamic simulation was used to
~ evaluate each revision. As a result, one revision was chosen for detailed
evaluation and full envelope operation. This DIA algorithm has been
programmed on a real-time, microprocessor-based controls computer [10, 11] at
NASA Lewis Research Center in preparation for testing as part of a ¢losed-loop
control of an engine in a test cell.

This DIA concept, referred to as Revision 2 in the previous contract {97,
operated as follows. 1In the case of no sensor failures, the outputs of the
normal mode filter were fed to the proportional control part and the sensed
outputs (N1 and PT6 only) were fed to the integral control. This ensured that
in steady state, the engine outputs were at the reference point, i.e., there
were no steady-state hang-off errors. In the case of a failure, the
synthesized value of the outputs were fed to both the proportional and
integral controls. Note that if the failed sensor is N1 or PT6, the integral
Togic ensured that the estimates of these measurements were driven to the
reference point. A detailed block diagram of the overall system is shown in
Figure 1.6.

The form of the control law, as shown in Figure 1.6, is given by:

No Failure:

U= Uy FCplZp - zp) + cIf(zI - z,) dt (1.2)
Failure:

u=uy o+ Cp(zp - ZPb) + Clj'(zI - ZIb) dt (1.3)

14
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The symbols are the same as in (1.1). Note that the estimates are being used
in the integral trim portion after failure isolation.

As part of the revision evaluation process, SCT:

(1) generated new gain matrices for both the normal and failure
mode filters used in the DIA algorithm;

(2) defined a minimum complexity DIA algorithm;
(3) examined estimator gain sensitivity to f1ight condition; and

(4) developed the revisions for correcting the bias problem in the

estimator outputs.

As a result of this study, the advanced DIA technique (Revision 2) was
shown to have improved performance over the technique chosen in the first
program. However, model errors limited the performance of the estimators and
made deterﬁiﬁation of detection and isolation thresholds difficult. The
present study attempts to alleviate these problems.

The scobe of the present research effort js to develop an analytic
understanding of the problems by applying the tools of robust multivariable

control theory to accommodate modeling errors.

1.3.2 The Fundamental Issue: Model Uncertainty

The previous section has identified mode] uncertainty as the main source

of problems in sensor DIA algorithm design. Model (system, plant) uncertainty
refers to the uncertainty in the errors between the nominal model and the
actual system. There are two generic uncertainty representations: structured
and unstructured [13]. The former refers to model parameters which are
uncertain. The latter refers to unmodeled dynamics which are also uncertain.
Reduced-order modeling techniques, linearization about operating points,
neglecting nonlinearities, etc., all result in contributions to either
structured or unstructured uncertainty. Figure 1.7 illustrates how

uncertainties can appear in a control system which includes sensor failure DIA

16
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logic. The "blocks" represent fixed devices or processors. The "clouds®
represent the system uncertainty and can be broadly grouped into two classes:
(1) uncertain (external) inputs
r - reference commands
d - environmental disturbances
b - biases or drifts in a failed sensor

(2) wuncertain (internal) dynamics, defined by the following
transfer function matrices:

AM(s) - plant model errors
AS(S) - sensor failures
Ac(s). AE(s) - control law and estimator reconfigurations from

DIA

Since model uncertainty is the source of most difficulties, an approach
is needed to deal with it in an effective manner. Robust DIA design provides
a means to do this.

1.4 METHOD OF APPROACH

The method of approach developed in this report is to use robust control
theory for threshold selector analysis and robust DIA filter design (as
described in Section 1.2). This requires the isolation of uncertainties as
shown in Figure 1.7. The approach establishes quantitative statements about
the interrelation among performance, robustness, and system uncertainty.
Figure 1.8 illustrates how all the uncertainties can be separately grouped for
analysis. The external inputs, such as commands, disturbances, and failure
biases, enter the system from the "outside." The dynamic uncertainties, such
as model errors, sensor failures, and DIA reconfiqurations, are "inside" the
system and function as a feedback loop around the "interconnection” system.
The interconnection system maps the external and internal uncertainties into
the outputs, i.e. tracking error and filter residuals.

18
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Up until recent years, there has been no unified control design approach
for such a system as shown in Figure 1.8. Research efforts [13-15], which are
elaborations on the Small Gain Theorem [16,17] have established the
mathematical framework for such an approach. Basically, the dynamic uncertain-
ties (AM, AS, AC' AE) all propagate in a specific way so as to cause a
quantifiable uncertainty about the map from the 1nputs (r,d,b) into the
outputs (e,y), provided bounds can be found for the dynamic uncertainties.
These bounds are obtainable from simple input/output system tests.
Furthermore, if the nominal system model is linear, the bounds and subsequent
input/output errors are fully representable in the frequency domain. For
example, the effect of all dynamic uncertainties on the tracking error and the
filter residuals can be represented by simple graphs. For good tracking with
no sensor failures, the error response and the filter residuals should be
small over all frequencies. On the other hand, if a failure occurs -- either
a bias/drift b or structure change AS —-— then the filter residual
frequency signature should be dramatically different from the normal

(unfailed) mode. Otherwise, detection is not possible.

The approach atiiizes the following recent advances [13-20] in control
theory:

(1) Uncertainty Propagation [15]

The dynamic uncertainties, as shown in Figure 1.8, can be bounded in
a sector in the frequency domain which then propagates through the
interconnection system so that the system input/output map is also in a sector
in the frequency domain. These sectors determine quantitatively the
performance/robustness trade.

(2) Internal Model Principle [18]
The principle states that asymptotic tracking and disturbance

rejection in the presence of plant uncertainty can only be achieved if the
controlled system contains a replica (internal model) of the commands and
disturbance signal generators. For example, tracking constant commands

requires integrators in the loop.
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These control design advances, together with methods for frequency-shaped
LQG [26] allow for design of either the DIA logic or control/estimator
direcf1y in the frequency domain. Thus, if detection is desired for a
particular failure, the compensation required can be seen in the frequency
domain exactly. Simultaneously, one can determine the effect of the new
compensation on tracking performance. A similar procedure can be used for
adaptive design.

These ideas are illustrated in the flowchart of Figure 1.9, which shows
how the tools generated from the method of approach can be used in a design
process. Notice that the modeling errors combine with the sensor failures and
the errors from DIA reconfigurations to form the system dynamic uncertainty.
It is possible to determine a bound on this uncertainty. The control system
(estimator/control law/DIA logic) is then evaluated in the frequency domain by
propagating the dynamic uncertainty as outlined above. The evaluation process
yields quantitative results which suggest how to modify or robustify the
design. This is an iterative process.

Notice that there are three levels of design. Constant gain DIA filters
provide a "first cut" design. Optimal thresholds for these filters can be
determined as well as minimum size of detectable failures (Level 1). Note
that these computations are a function of bound on model error, noise, and
class of failures. If a higher level of performance is required, a robust DIA
design can be carried out as shown in the flowchart (Level 2). Still better
performance is possible by making the DIA filters adaptive (Level 3).

1.5 OUTLINE OF REPORT

This chapter has discussed the background and problem statement for this
research effort. Current technology approaches were reviewed. The
fﬁndamenta1 problem to be dealt with in DIA logic design, to achieve better
performance, has been identified as model uncertainty. The proposed solution
has been discussed at a high level. The rest of this report contains the
technical details of the method of approach.
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Chapter II discusses the effect of mode] uncertainty on stability and
performance. Both stability and new performance robustness measures are
developed. The performance robustness measures are with respect to tracking
and disturbance rejection properties of the system. The effect of mode]l
uncertainty on aéymptotic tracking capability is discussed. It is pointed out
that for adequate asymptotic performance, an internal model is necessary.

This creates certain so-called "structurally robust blocking zeros" to
guarantee asymptotic performance. '

Chapter III discusses the effect of model uncertainty on sensor fajlure
DIA. The fundamental concept of the threshold selector is introduced. This

represents a new, innovative tool for the analysis and synthesis of DIA
algorithms. The threshold selector concept is illustrated both for a scalar
example and for a model of a multivariable turbofan jet engine. A c¢losed-form
solution has been obtained for the scalar case, and a computer-aided design
(CAD) approach was developed to solve the muitivariable case.

Chapter 1V discusses the design of robust filters for sensor failure
NTA. The robustness of the filter is due to the presence of an jinternal model
(as discussed in Chapter II) and due to the frequency-shaping of an LQG cost
functional. The formulation and mathematical details of the frequency-shaped
filters are discussed in this chapter. Results from an example using a
dynamic simulation of a turbofan jet engine are presented.

Chapter V presents the results of an evaluation study comparing the
performance of the proposed robust DIA scheme to one of the schemes developed
in Ref. 9. It is found that the performance of the two techniques is similar
for hard failures, but the proposed scheme Shows considerable improvement in
the case of soft failures.

Chapter VI provides some concluding remarks and directions for future

research.

Appendix A discusses model uncertainty and contains a procedure along
with results for generation of a bound on model error for a jet engine.
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1.6 REMARKS ON NOTATION

Standard notation from control theory literature has been used whenever
possible. For example, time domain quantities are usually denoted by lower
case, whereas the same quantity in the frequency domain has been denoted by
upper case. However, there are several exceptions. Lower case b(t) is used
to denote a bias in the time domain and b(s) denotes the same quantity in
the frequency, and similarly for w(t) and v(s). There are other
exceptions that are generally clear from the context.
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II. MODEL UNCERTAINTY AND ITS EFFECT ON STABILITY AND PERFORMANCE

Model uncertainty is the main problem in DIA algorithm design as
discussed in Chapter I. How model uncertainty manifests itself affects what
one can do to achieve a high performance DIA algorithm. Hence, its effects on
stability and performance need to be studied before addressing its effects on
detection and robust filter design (to be discussed in Chapters III and IV,
respectively. This chapter discusses the sources of model uncertainty in
dynamic systems. Both unstructured and parameter uncertainty are considered.
Details on model uncertainty and a procedure for computation of its bound for
a jet engine example are contained in Appendix A. This chapter concentrates
on the effects of model uncertainty on stability and performance properties of
the system. New measures are defined for performance robustness analysis
which are similar to the well-known stability robustness measures [13]. The
effect of model error on asymptotic tracking is explored. It is shown that an
internal model is required in the DIA filter to eliminate the effect of the
biases on the outputs of the system asymptotically. The inclusion of the
internal model results in creation of certain structurally robust blocking
transmission zeros to guarantee robustness.

2.1 MODEL UNCERTAINTY

A very natural way to determine model uncertainty is to perform an
experiment which compares the model with data from the actual system (plant).
If there is no error between the model and the plant, then one has perfect
knowledge of the plant. Normally, this is not the situation -- the error is
non-zero and represents how close the model is to the plant. For example,
consider the simple experiment depicted in Figure 2.1(a), where e s the
error between the perturbation output &8y =y - Y, from the actual
plant and the corresponding output 6ym of the linearized mpde]; su
js the perturbation input to both the plant and linearized model. Po(s) is
a transfer function matrix description of the model.
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By applying sinusoidal test inputs, one can experimentally obtain a
frequency-dependent bound as shown in Figure 2.1(b). Often, a good model will
be accurate at a certain frequency range, small &(w)*, and less accurate
at other frequencies, large &(w). Figure 2.1(b) is characteristic of
unmodeled high-frequency phenomena, incorrectly modeled parameters, as well as
some types of neglected nonlinearities. For jet engine models, the key
problem is "DC mismatch," i.e. non-zero error at low frequency. This is the
predominant cause of setpoint “hang-of f" and estimator bjas.

Sources of this type of uncertainty may be quite diverse. Slowly
drifting parameters in an otherwise perfectly known linear time invariant
(LTI) plant could yield the same uncertainty description as a plant with
unknown nonlinearities approximated by an LTI model.** The key feature of
this uncertainty is that, although it is bounded, one does not know the
structure. Following Ref. 2, this is called the unstructured uncertainty of

the model Po(s). Essentially, the unstructured uncertainty indicates the
accuracy of the model in the neighborhood of the equilibrium. Equivalently,
the nlant input/output behavior in the neighborhood of the equilibrium can be
described by the linearized uncertain model

Pm(s) = (I + A(s))Po(s) (2.1)
where A(s) 1is the LTI unstructured output-multiplicative yncertainty
operator with transfer function matrix A(s). A1l that is known about
a(s) is that it is stable, causal, and bounded by

ola(jw)] < 8(w), w20 (2.2)

where ;(-) denotes the maximum (upper) singular value.

*  §(w) representing model error is nct to be confused with perturbation
quantities such as éYD, 8Ym, etc.

*x*% To reflect parameter errors in &(w) may require a very large number of
experiments as shown in Figure 2.1(a).
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In a general way, unstructured uncertainties account for all neglected
dynamics, approximated nonlinearities, etc.

One further remark about the uncertain linearized model Pm(s). For
every input/output pair (u, y) which satisfies

Y(s) = P(s) U(s) (2.3)

in the neighborhood of the equilibrium, there exists a Pm(s)
(equivalently, a A(s)) such that Y(s) = P(s) U(s). One way to view this
is to imagine that A(s) contains a sufficiently large (theoretically
infinite) number of adjustable parameters so that any input/output can be
perfectly matched. The bound on A(s) in (2.2) conveys the worst case
situation. Note that A(s) «can be infinite dimensional, without loss of
generality.

Parameter Uncertainty

Modeling of plant uncertainty by the description given in (2.1) and (2.2)
will be used throughout. A state-space linear plant model is assumed to be
given by

>
it

on + Bou (2.4)

y Cox + Dou

with a corresponding model transfer function matrix

P (s) = C(sI - AO)" B, + D, (2.5)

This model is valid only for input/output behavior restricted to a
neighborhood of the equilibrium point. A new equilibrium point will have a
different nominal model, i.e., the parameters in Po(s) will change as a
function of the equilibrium. This is easily seen in the definition of

Po(s) given by (2.5). In a general way, one can consider the nominal model
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to be a parametric model, where the parameters are adjusted to best fit the
input/output data.

For example, let Pa(s) denote a parametric model of an uncertain

plant P(s), where a 1is a k-vector of parameters in the model. Standard
parameter identification methods can be used to find the best a ¢ Rk to

fit the data from the actual plant. For example, given plant input/output
data (u, y) on the interval t ¢[0, T7, a good parametric model js found

from

inf 1y - ya"T (2.6)
ach

where inf denotes the greatest lower bound or jnfimum and el is a

suitable norm, such as the L2 norm

T
xhy =(/(; x'(t) x(t) dt)”2 (2.7)

The perfect matching condition

YQ(S) = Pa(s) U(s) (2.8)

for some a and all (u, y) 1is never achieved for models of actual systems.
The usual situation is the opposite. In fact, there is usually a range of
a which solve (2.6).

The variations in « can be considered as uncertain parameters in the
model. Since these parameters enter into the model in a definite manner, they
can be referred to as the structured uncertainty of the model [13-15]. In a

general way, unstructured uncertainties account for all neglected dynamics,
approximated nonlinearities, etc. The structured uncertainty essentially
yields the range of parameter variation in the model for a best fit of the
data.

Parameter (or structured) uncertzinties can also be viewed in a slightly

different way. Consider the system
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(Ao + SA)x + (B0 + &B)u (2.9)

=C x
y o}

where (Ao, Bo' Co) are the nominal system matrices and (&A, 4B)

represents a perturbation in the system parameters. Suppose further that

(8A, &B) are known to be bounded such that

o(8A) < a, o(8B) < b (2.10)

Following the procedures developed in Refs. 4 and 5, one can construct bounds
which include these parameter perturbations. Such a construction is useful
when analyzing the effect of specific parameter uncertainties. Bounds on
model error constructed in this way account for the type of uncertainties

discussed by Leininger [4].
2.2 EFFECT OF UNCERTAINTY ON STABILITY AND PERFORMANCE

The model uncertainty discussed in the previous section has significant
effects on both stability and performance of the system under feedback
control. This section establishes quantitative trade-offs between uncertainty
and stability, as well as performance. For this purpose, generic DIA
configurations need to be considered for analysis and design purposes. In
previous programs [8, 9], an estimator was designed as part of the DIA Togic
to provide synthesized estimates of system outputs. The estimator may operate
both as part of the feedback loop or out of the feedback loop.

Consider the two generic candidate design schemes shown in Figures 2.2
and 2.3. The design in Figure 2.2, referred to as DIA 1, shows a feedback
control system with an estimator running out of the control loop, i.e.,
"piggyback.” The design in Figure 2.3, referred to as DIA 2, shows the
estimator running in the loop. In both cases, the estimators contain the
nominal plant model Po(s), which approximates the actual plant Pm(s),
and a dynamic filter gain F(s), such that
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Q(s)

= P, (s)U(s) + F(s)v(s)
v(t) = z(t) - y(t)
z(t) = b(t) + y(t)

(2.
(2.
(2.

where y(t) 1is the estimate of the output y(t), v(t) is the innovations

signal, and 2(t) 1s the sensor output, which is composed of the engine

output y and a bias signal b(t) which represents both sensor noise and a
class of sensor failures. The estimator structure (2.11) is equivalent to the

usual state space structure for estimators/observers, where

[
-

Ax + BU + Ku(t),  w(t) = y(t) - y(t)

n

X

- -

y = Cx + Du

n

In this case, the nominal plant model and filter are, respectively:

P (s) = C(sI - A)—]B +D

F(s) = C(sI-A) 'k
The control signal is given by
; Gc(s)(R(s)—Z(s)). DIA 1

U(s) =
L 6.()(R(s)-¥(s))  DIA 2

where R 1is the reference command and Gc(s) is the controller transfer
function.

(2.

(2.

(2.

11)

12)
13)

.14)

.15)

16)

17)

.18)

19)

Both of these designs capture the significant characteristics of current

DIA schemes as well as being general enough to account for a large class of

alternate DIA schemes. For example, DIA 1 is representative of either:

(1) a nominal (no failure) controller with DIA logic based on a
"piggyback" estimator; or

(2) a reconfigured system where G¢(s) 1is a controller/estimator
combination with an estimator out of the loop for further DIA
actton,

32



Note that in (1) and (2) above, the out-of-loop estimator need not be the
same. Similarly, DIA 2 is representative of either:

(3) a nominal (no failure} system where the DIA logic is based on
an estimator in the loop; or

(4) a reconfigured system where the DIA logic is based on the
estimator in the loop.

As in (1) and (2), the estimators in (3) and (4) need not be fdentical.

2.2.1 Effect of Model Error on Stability

In this section, tools are developed for determining the effect of
uncertainty on stability of DIA 1 and DIA 2. It will be assumed here that the

plant is represented by

Pm(s) = (I + A(s)) Po(s) (2.20)
with

o(a(jw)] < 8(w) , @> 0 (2.21)

where Po(s) js the nominal engine model obtained by linearization about an
equilibrium and 4a(s) 1is the unstructured model uncertainty.

In order to analyze the systems, it is necessary to determine the
transfer functions defined implicitly by,

E(s) HerR(s) + Heb(s)b(s) (2.22)

v(s) H (s)R(s) + H _(s)b(s) (2.23)
r vb

The most convenient way to do this is via the "interconnection® structure

where the uncertainty A(s) 1is isolated [15] as shown in Figqure 2.4,

E(s) H H R(s)
= er eb (2.28)

v(s) Hvr Hvb b(s)
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A more detailed discussion of the interconnection system is provided in the

next section. For DIA 1, one gets (suppress the 's' variable)

-1
Hyp = S(I + &T)
H =T+ S(I + aT ot
eb = ( )
H = L(I + aT s

wr )

H. o= L(I + AT)'1

vb

and likewise for DIA 2, one gets

S - S(I + GL)(I + ATM)_lAT

T .
]

er
Hyp = TM + S(I+ GL(T + ATM)~1ATM
H = L(I + ATM Tat
vr'— ( )
-1
H, = L(I + aTM)
wb
where
G=PG
0 C
-1 -1
S=(I1+6) , T=(IL+G) 6
- -1
L o= (I +F) , M=(l+F) F

The transfer functions (2.25) and (2.26) are stable if

(1) S, T, M, and L are stable
(2) 8(w)o[T(jw)] <1, w20

(3)  s(w)olT(JIM(Ju)] < 1, w >0

Consider the following scalar example, where
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a_ - a
Po(s) =S Gc(s) =7 + S (2.29)
F(s) = —— (2.30)
(s) = s+a ’
and from (2.27),
a _ s _a
G = s’ S = S5+a * T s+a (2.31)
_S44d _ k
L= Sia+k M= Srark

Consequently, conditions (2) and (3) above yield the following model error

bounds:
(@) st < 1+ [2F)7% w0 (2.32)
w 1 w 1
(3') &(w) < (1 + (;)2) /2[(1 + %)2 + (;)2] /2, w>0

The above bounds can be interpreted as the maximum permissible bounds on
model error for which the system (DIA 1 or DIA 2) remains stable. For
example, if the actual model error is predominantly OC mismatch where the DC
gain is known to within #10 percent, i.e., & = .1, then the above is
certainly satisfied.

2.2.2 Effect of Model Error on Performance: Performance Robustness

Performance refers to the behavior of the system in relation to specified
objectives, such as transient response, command following, and disturbance
rejection. Performance robustness is the ability of the feedback system to

maintain a performance specification despite plant uncertainty. In order to
realize such robustness properties of feedback, it is necessary to establish
quantitatively the trade-offs and relationships among performance, robustness,
and plant uncertainty. Presented below is a method for directly analyzing

performance robustness of uncertain multivariable systems.
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2.2.3 Conic Sectors

Structured and unstructured uncertainties can both be viewed as belonging
to an Lp—conic sector, defined as follows [15]:

Definition: A relation (u, y) e H 1is inside the L -conic sector,
denofed H ¢ Lp—Cone (C, R, S) if for some D ¢ [1, =] there exists
compatible operators C, R, and S such that H - ¢ is Lp—stab1e* and
HS(y - Cu)up < ||Ru||p for all (u, y) ¢ Lp X Lp with y ¢ Hu.

In the case of Lz—stab1e LTI operators R, S, and H-C with transfer
function matrices R(s), S(s), and H(s)-C(s), respectively, the L2—con1c
sector is equivalent to the frequency-domain condition,

S[S(jw) (H(jw) -ClieRT(J0)] £ 1, Hw (2.33)

let @ = diag (a] - ak)
structured uncertainties. Equivalent statements for plant uncertainty with the LTI
model P [a] of P is that the structured uncertainty Q ¢ Lz—cone (0, 8, 1),
where B = diag (B ... B ) and the unstructured uncertainty [ ¢ Lz—cone (0,

be a diagonal matrix containing all the

I, 1). Thus, conic sectors conveniently describe typical model (plant) uncertainty.

2.2.4 Plant Interconnection Model

It is convenient to represent the uncertain plant as shown in Figure 2.5,
which is patterned after the uncertain system descriptions presented in
Ref. 15. The operator

Q@ O
A= ( ) (2.34)
0 T

* A relation H 1is said to be Lp—stab1e if for all u e Lp. y ¢ Hu ¢ Lp.

and there exists finite positive constant k such that llyllp < kuuup.
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contains all the uncertainties in the plant -- both structured and

unstructured. The operator H 1is referred to as the plant interconnection

system and serves to isolate all the uncertainties in & from the rest of

the plant. Consequently, H 1is completely known. The governing plant

equations are then

)G C)

v = AZ

The plant input/output relation is given by

y = P[A]u
with

P[a] =P + H (I - aH )'] aH
0 yv v Zu

where P is the nominal plant defined by
0]

P =P[a] =H

o} a=0 yu

(2.35)

(2.36)

(2.37)

(2.38)

(2.39)

The uncertainty A can also be viewed as belonging to a conic sector,

i.e. & ¢ L,-Cone (O, R, I), R = diag(B, I) which implies the conic

2

sector descriptions of the uncertainties of @ and Tr. The plant
representation shown in Figure 2.5 is extremely useful in evaluating

performance of the closed-loop system. With an LTI model, the conic-sector

bound on 4 is equivalent to the frequency-domain condition,

;[A(Jw)R_](Jw)] <1 R(jo) = diag(B, t(w)I)

2.2.5 Normalization

The uncertainty and interconnection system can be normalized.

-1
AR replace A, RHZv replace sz' and RHZu replace

38
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Ry P[a] now has the same form as before, but 4 1is normalized so

that

A ¢ Lp-cone (0, I, I)

For convenience, assume that henceforth these replacements have been made and

the plant interconnection system is normalized.

2.2.6 Performance Robustness Measures

Consider the feedback system shown in Figure 2.6. The plant has the
transfer function

P(a) = PO(S) (I + &(s)) (2

where Po(s) is the nominal plant transfer function and A(s) represents
the unstructured input-multiplicative uncertainty. Po(s) expressed in

terms of state variable matrices is

Po(s) = C(sI-A) B +0D (2

The closed-Toop interconnection system is

Y _ HYR(S) HYd(s) HYV(s) R
Z HZR(S) HZd(s) sz(s) d (2
v

where for a unity feedback system ("suppressing" s)

-1
HYR = (1 po Gc) po Gc (2
Hoo = (1 +P_G) ' p (2
Yyv ( 0 c) 0 :
He = -(I1+6 P) G P (2
e, ( C o) cC 0 ’
Heo = (1L +6 P) ' 6 (2
R~ (I + C o) c )
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Now assume that the tracking performance requirements are expressed in the
frequency domain in terms of

"HYR(A) - H

”HYR”

|
YR'

< plw) ©>0 (2.48)

where HYR is the nominal input-output transfer function, HYR(A) is
the perturbed input-output transfer function and p(w) represents some

given function of frequency which specifies tolerable tracking performance
degradation. Furthermore, if &(w) represents a bound on model
uncertainty, i.e.

Hat < &(w) w>0 (2.49)

then the tracking performance robustness properties of the system is described

by the following theorem.

Theorem 2.1: Assume that the tracking performance requirements are
expressed by (2.48) and the closed-loop interconnection system is stable.
Then tracking performance requirements are guaranteed if

GPRT(w) > §{w) w >0 | (2.50)

where

p(w) a(Hyp)
$pg_(@) = —— - - - (2.51)
T c(HZV)c(HYR)p(w) + °(HYV)°(HZR)

is the tracking performance robustness measure.

Proof: Assuming d = 0, from Eqs. (2.38) and (2.43), it follows that

HYR(A) = HYR + HYV(I - AHZV) A HZR (2.52)

Substituting (2.52) into (2.48), one obtatins

I a0 A W < plw) UH (2.53)

yy(l = aHyp R yR"
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Using the matrix inequalities

o(AB) > o(A) g(B) (2.

o(I =€) 21 -a(C) if o(C) <1 (2.

o(h) = — 5 (2.
o(A )

then it follows from (2.53) that

o(HYV) 8 o(HZR)

1 -8 of

Hay)

Solving for the worst-case value of & in (2.57) and naming the particular

value satisfying (2.517) GPR we have
' T

plw) o(Hyp)

< plw) alHyp) (2.

54)

55)

56)

57)

$pr. = = . - - (2.58)
T O(HZV)O(HYR)p(w) + c(HYV)a(HZR)

Therefore, so long as

§ <8 (2.59)

PRT
then (2.57) is satisfied and the tracking performance robustness is guaran-
teed. Q.E.D.
Suppose that the disturbance rejection performance robustness is

expressed as

nyn < Blw) w2>0 (2.80)

where B(w) describes the allowable disturbance rejection performance
degradation. The following theorem describes the performance robustness
properties of the system.
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Theorem 2.2: Assume that the disturbance rejection requirements are
expressed by (2.60) and the closed-loop interconnection system is stable.
Then the disturbance rejection performance robustness is gquaranteed if

6PRD(w) > §w) w >0 (2.
where
B - o(H,,)
Spp (@) = C —rd - (2.
0 O(HZV)(B-G(HYd)) + °(HYV)°(HZd)

is the disturbance rejection performance measure.

Proof: Assuming R = 0, from (2.36) and (2.43) it follows that
-1

HYd(A) = HYd + HYVA(I - HZVA) HZd (2

and
-1

uHYd + HYVA(I - HZVA) HZd" <B (2.
Using the matrix inequalities (2.54) through (2.56), the above equation can
written as

a(H, V(1 = a(H,y,) &) + a(Hyy) & o(H,.)

Yd EV YV Zd <B (2.
1 -4 a(HZV)

Solving for the worst-case value of & from (2.65) and naming it GPR (w)

we obtain 0
B -~ a(H, )
$pp (@) = 7 —Ya (2.
0 c(HZV)(B - °(HYd)) + a(HYV)c(HZd)
Then, so long as
§ <& (2
PRD

(2.65) is satisfied and the disturbance rejection performance robustness is
guaranteed. Q.E.D.
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The stability robustness measure for the system is given by [13]:

]

6SR(w) = oy (2.68)
v
and the system is stable provided that
6SR(m) > §(w) (2.69)
[t is easy to see that
GPRT(Q) < 6SR(m) w>0 (2.70)
,6PRD(w) < ASR(m) w2>0 (2.71)

Figure 2.7 shows the stability and performance robustness measures for a
fifth-order multivariable system for 5% performance degradation from nominal.
These measures then establish how accurate the plant model has to be for
specified performance as a function of frequency. Note that various
controller designs can be evaluated on the basis of these measures.

2.2.7 Effect of Model Error on Asymptotic Tracking

The discussion to follow will illustrate the internal model principle

(18], namely that, design of robust filters (and controllers) to achieve
asymptotic tracking and disturbance rejection, despite model error, can only
‘be accomplished if a model of the command and disturbance is incorporated in
the filter (controller). It is shown that the inclusion of the internal model

creates appropriate structurally robust blocking zeros.

The critical performance measure for engine control is the ability to
achieve asymptotic tracking despite model error at DC. This section
highlights some of the main issues associated with this problem.

In order to evaluate the effect of model error on asymptotic tracking,
assume that the following conditions hold:
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(1) The model error satisfies (2.28), i.e., the system is stable.
(2) The reference r(t) » rgg (constant) as t -+ =.
(3) There is no sensor failure, i.e., b = 0.

These conditions, together with (2.31), yield the following steady-state
signals for DIA 1 (estimator out of loop):

eSS =0 (2.72)
H o = L(I+aT) 4T
wr - ( A)
_S5+3_ a -1, a
T s+a+k 1+ s+a) b Sia (2.73)
v(s) = H (s) R(s) (2.74)
vr
N aa(0)
vos(5) = T3ak) (148(0)) Rss(®) (2.75)
Similarly, for DIA 2 (estimator in the loop)
v(s) = H (s)R(s) (2.76)
vwr
H = L(I+ATM)_1AT (2.77)
vl
- _ . _—as(0)
€ss = "Vss T T a+k+ka(0) ' ss (2.78)

This latter result exhibits the undesirable "hang-off" when the estimator is
in the loop, e.g., DIA 2. This problem can be eliminated if the filter in
DIA 2 contains an integrator, e.g., if F(s) in (2.30) has the form,

f1s +f

2 (2.79)

) Sy

To see this, consider the plant and controller of (2.29) with F(s) as in
(2.79), then

Gz% . T="_ (280)
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] s(s+f3)

L = (I+F)"' = (2.81)
s(s+f3) + f1s + f2
fls + f2
M=LF = (2.82)
s(s+f3) + f]s + f2
For DIA 2
-1
H\,r = L(I + aTM) AT (2.83)
and
1imH =
s»0 V" 0 (2.84)
It then follows that eSS = 0.

Internal Model Principle and Structurally Robust Blocking Zeros:

The internal model principle states that asymptotic tracking and
4isurbance rejection in the presence of plant uncertainty can only be
achieved if the controlled system contains a replica (internal model) of the
commands and disturbance signal generators [18-20]. For example, tracking
constant commands and rejection of constant disturbances requires integrators
in the loop. The presence of the internal model creates zeros of transmission
in certain transfer functions. For instance, for command following, transmis-
sion zeros are created between the reference input and the tracking error at
the frequencies of the commanded signal. These zeros referred to as
"blocking" zeros, are also structurally robust, i.e., the locations of the

zeros are unaffected by parameter variations.

For sensor failure DIA systems, if the plant's steady-state output is to
be unaffected by a failure (represented by the bias b), then the transfer
function from b to u (and therefore y) must contain a structurally robust

blocking zero. This would happen if an internal model is present in the
filter. The following examples illustrates this.
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Example 2.1 SISO System with Unknown Measurement Bias:

Consider the SISO plant

P.(5) = T0; (2.85)

with the filter containing the internal mode]

Plant:
x = -ax + au
y =X (2.86)
z=y+b

Filter: X = -ax + K](z - z) + au

e

b = Ky(z - 7) (2.87)

- a -~

Zz=x +D

Control law:

~

U = _Kox (2.88)

Then substitution of the control law in the system equations results in the
overall system equations from the bias to the control

1 T T 7.7 [
X —a—K]—aK0 —K1 K] X K]
b -
b = -K2 ”Kz K2 b + K2 b
[ x ] I_—aKo 0 -a 4 L x. | 0 ]
X
u = —[Ko 0 0] b (2.89)
X
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For a Tinear time-invariant system of the form

; = Ax + Bu
(2.90)

y = Cx + Du

the transmission zeros are defined as those frequencies at which the system

matrix (pencil)

Y,(s) = | -==--- e (2.91)

loses rank [22].

The zeros from b to u are given by

[ i
s+a+K1+aK0 K] —K.I I K1
- — ' =
Yz(s) = det K2 s+K2 K2 | K2 0
aK 0 5+a l 0
S
K 0 o ' o
L b
= K K s(5+a) (2.92)

i.e., there is a zero at the origin. Furthermore, this zero is structurally
robust, i.e., its location does not change in spite of the parameter errors in
the system matrices. To see this, assume that the system matrices are modified

such that

B(s) = B (2.93)

0 T st+a+e

where ¢ and B represent plant parameter variations of any size so long

as the closed-loop system remains stable.

The overall system equations from b to u are now given by
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-1 —
(—a—aKo—K1) —K] K]
) §
b= —K2 —K2 K2
X -(a+B)K 0 -(a+e)
T . 0 —
X
u = [-K0 0 01 1|b
X
The zeros are
K
S+3+a 0+K1 K]
v,(s) = det K2 s+,
(a+B)K 0
- - —K ______ 0_ -
L_ 0
= —K1K25(s-a—c)

wnich confirms the fact that the zZero at

variations hence the robustness property.

s=0

(2.94)

(2.95)

is unaffected by parameter

Example 2.2 Multivariable System with Unknown Constant Measurement Bias:

Consider the general square multivariable system

X

Plant: y
z
Filter: ;
2
'

= AXx + Bu
= Cx

=y+b

= Ax + Bu + K](z—z).
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-~

Control law: u = -Kox (2.99)

The overall system equations are

— = — — r'ﬂ —
3 -~
X A-BK K€ K, K, S| | x K,
3 ~
b |= K, C X, KCl [ b + ] K| b
X -8K 0 A x 0

I I S B -

u = [—KO 0 0] (2.100)
The transmission zeros of the system are given by
— T
sl A+BK0+K]C K] —K1C = ~K,l
v,(5) = det Kot Ik, KL : = 0 (2.101)
-B K ) s[-A | 0
LY Ll |-
-K 0 0 j O
which after elementary row and column operations is equivalent to
[ s1-a K, ! 0
K 0 0 0
- |
YZ(S) =det) o R (2.102)
_____ 0_ _ 1A} 0
-K_ ! s
- 2|1 o | _]

which shows the presence of blocking zeros at the origin. To see that these
transmission zeros are structurally robust, consider the parameter and
controller perturbations

~

A=A+ &A (2.103)

B =8+ 48 (2.104)

]
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Ky = Kot 8K, (2.105)
K.= K. + &K (2.106)

K2 = K2 + 6K2 (2.107)

Thé transmission zeros of the perturbed system are given by

pr— - _ I l ——1
sI-A -K1 ] 0 1 0
~ l |
~ -K 0 0
Y, (s) = 0 10 (2.108)
e e o - - — |- = <l- - -
0 o lsi-X : 0
______ ~_ _.l__ R [ —
0 -K 0 | sl
| 2 | | ]

which confirms the fact that the transmission zeros at the origin are
structurally robust as they are not affected by plant parameter variations.

The ibove dJevelopment can aiso be carried out For sysiems with a non-zero
direct transmission term (D # 0) and with more complicated dynamics for the
bias b. The conclusions would be the same.

2.3  SUMMARY

In this chapter, we have discussed various sources of model uncertainty
and its representation. The effects of model uncertainty on stability and
performdnce was discussed for two generic configurations. New performance
robustness measures were introduced to determine tracking and disturbance
rejection performance robustness properties. The effects of modeling errors
on asymptotic tracking were discussed. It was shown that an internal model is
required in the filter to produce unbiased estimates.
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IIT. EFFECT OF MODEL UNCERTAINTY ON FAILURE DETECTION:
THE THRESHOLD SELECTOR

One of the most difficult problems in sensor failure DIA algorithm design
is the ability to evaluate analytically the DIA algorithm in the presence of
model error. In this section, for the first time, a unified framework which
allows for this analysis is presented. A new concept is introduced, referred
to as the threshold selector, which is a nonlinear inequality whose solution

defines the set of detectable sensor failure signals. The threshold selector
is consistent with the frequency domain model uncertainty description that has
been emphasized in this study. What follows is a heuristic discussion of
fatlure detection which leads to the notion of the threshold selector. For
illustrative purposes, the focus will be on the innovations approach to
failure detection. As will be seen, the methodology is quite general and not
limited to just the innovations approach. The conventional technique of
selecting thresholds in innovations-based DIA filters has been based on
noise. In a previous study [9], constant thresholds were selected based on a
medsur2 of innovat:ons size obtained from a no failure hypothesis filter.
However, the current technique determines thresholds based on model error,

sensor noise, and class of failures, as well as the speed of the DIA filters.

The threshold selector inequality to be presented here represents a new
and innovative tool in the analysis and synthesis of DIA algorithms. In
particular, good estimates for the minimum threshold set are obtained in the
multivariable case. 1In this case, it is necessary to compute operator gains
dependent upon the norm measure used in detection. DIA designs, more sophis-
ticated than those illustrated here, can also be analyzed and synthesized
using the threshold selector inequality.

3.1 INNOVATIONS APPROACH TO FAILURE DETECTION

Many sensor failure detection schemes (for example, see Refs. 1, 8 and 9)

have been based on determining the characteristics, such as the RMS value, of
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the innovations v(t), over a given finite time jnterval t ¢[0, T]. In
this section, a framework will be presented within which it is possible to
evaluate directly the effect of model uncertainty on the ability to detect a
failure. The analysis presented also proves to be extremely valuable in the
selection of the DIA estimator.

The problem formulation is as in Chapter II. From (2.24), the innovation

sequence may be expressed as

v(s) = Hvb(s)b(s) + Hvr(S)R(S) (3.1)

where H b and H - are dependent on the model uncertainty A, and from
v v

(2.25) and (2.26), 7
Hvr(s) = Hvb(S)A(S)T(S) (3.2)

Define the bias b as

b=n+Ff R , (3.3)

where n 1is zero-mean sensor noise and>F‘ié a drift signal associated with a
class of sensor failures. In practice, the situation i1s that a known class of
failures is possible, and detection is limited by some bounded noise signal

and bounded model error. Let Qn’ Q., and QA denote, respectively,

f’
the bounded sets of noise signals n, failure signals f, and model errors
A. Let J(x) denote a measure of the innovation size on the interval

0 <t <, where J(x) 1is given by
J(t) = lvllt : (3.4)

The (truncated) norm operation u-nT is based on an RMS measure of the
innovations and will be defined precisely below. The norm in €q. (3.4) may be
evaluated either in the time domain or fregquency domain using Parseval's
theorem [28]. Hence, the notation

I(+) = !lv(s)llT (3.5)
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denotes evaluation in the frequency domain. Substituting (3.2) into (3.4)
gives

J(x) = HHvb(s)(N(s) + F(s) + N(S)T(S)R(S))IlT (3.6)

With no model error, 4 = 0 and

v(s) = H (s)(N(s) + F(s)) (3.7)
v

Thus, a non-zero bias due to sensor failure is detectable in y through the
dynamics of Hvb given by (2.26). Under mild constraints, it is possible
to detect the presence of failure for relatively small bias. The only limit
is due to noise levels in the sensor. However, the model error effectively
raises the detection threshold (3.6). It was found in previous applications
of sensor failure DIA logic to the turbofan engine problem [8, 9] that the
model error considerably dominates any sensor noise level and is the primary
cause of false alarms and misses. What is sought is a means to detect the
presence of failure bias b despite model uncertainty 4. More
specifically, what are the conditions of the transfer function matrices

Hub and Hur in (3.1) such that the ability to detect a failure is
maximized? Further, what is the most sensitive detection scheme for a known

class of failures?
3.1.1 False Alarm

A major requirement on detection is to reduce or prevent false alarms.
Thus, in the absence of any failure signal, J(x) should be less than a

threshold value, Jth' Setting f =0 1in (3.6) gives*

Jth(r) = Sup HHUb(s)(N(s) + w(s)T(s)R(s))llT (3.8)

For the sake of brevity, the notation sup(e«) is used in place of sup(-)
X Xef
X

for all x =n, f, 4. Likewise, sup(+) means sup(+)
X,y Xch.chx
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where sup(e+) denote the supremum or the least upper bound. Note that the
threshold function is dependent upon the known reference command r as well

as bounds on the noise and model errors. In fact, with no model errors,
A =0 and the threshold is determined strictly by the worst-case noise
level, i.e.,

Jth(r) = s:p "Hvb(S)N(S)”t (3.9)

3.1.2 The Threshold Selector

Setting a threshold to eliminate false alarms due to sensor noise and
model error will cause the detector to miss certain failures. The question
is: What is the minimum detectable failure? In other words, find the
threshold failure set. Denote this set by gf. which is defined as
those Fch such that

inf J(x) > J
a,n,f

th(T) (3.10)

where inf(+) denotes the infinum or the greatest lower bound. Substitut-
ing (3.6) and (3.8) into the above gives
inf IH _(s)(N(s) + F(s) + A(s)T(s)R(s)nT > sup IIH

vb vb

(sY(N(s) + a(s)T(s)R(s})n
a,n,f A,n T

(3.11)

If we decompose the innovations into components due to the noise, failure, and
error model

v(s) = vn(s) + vf(S) + vA(s) (3.12)

then (3.11) may be rewritten as

inf v + ve + v il >sup liv. + vl (3.13)
a,n,f n T A,n n AT
Since this inequality generates the minimum threshold set, it is referred to

as the threshold selector. An estimate of the smallest size of failure f

which is detectable can now be calculated.
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Theorem 3.1: An estimate of the size of minimum detectable failure
|fl 1is given by

[fl > 2 Jth(r)/B(r) (3.14)

with the threshold as

Jop(t) 2 (max o [L(Je)]) 0 + 8lrfo L(Q, LTI(x)] (3.15)
and

B(t) £ [0 L(x - to)] (3.16)

[r] = norm of the reference input signal

nes

IF

norm of the failure signal

|

0 K= operator gains which are functions of type of failure and
T reference signals; k = i,]j

8 4 upper bound on model error (constant)

ty & faiture time

4 size of detection window

-
1l

n

bound on RMS sensor noise

Proof: A conservative estimate of the threshold set can be found from
the inequality:

inf va(S)H > 2 sup ”vn(S) + vA(s)u (3.17)
f,a T a,n t

since (3.17) implies (3.13). This can be seen 1s follows. We may rewrite
{(3.17) as
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}?g Hug(s)ly - zeg Nop(s) + va(s)th > Z?R lon(s) + vals)iy

and since
sup v (s) + v, (s) It 2> inf v _(s) + v, (s)HN (3.
a,n n a £,8 n A T
(3.18) may be written as
inf v (s)n = inf Hiv (s) + v (s)n > sup lv (s) + v {s)n
F.a f T a,n n A T a.n n A T
(3.
However,
Huf(S) + vn(s) + uA(s)uT ? luvf(s)nT - an(S) + “A(S)"fl
= llvf(S)HT - I|vn(S) + \JA(S)IIT ’ (3
as long as.
llvf(s)uT > an(s) + uA(s)uT (3.
Supstituting (3.21) into (3.20), we have
inf v (s) + v.(s) + v (s)n_ > sup lv (s) + v {s)H
a.n,f n f A 1 a.n n A T
(3.

which is (3.13).

In order to utilize (3.13) or (3.14), it is necessary to specify the
detection measure 1lenn , and the sets Qf. Qn. and QA. Suppose that
T
detection is based on the root mean square (RMS) measure,

HxllT = (}-/; IX(t)Izdt)]/z (3.

where |x(t)| 1is the Euclidean norm of x(t), 1.e.,

1/2

[x(t)] = (x'(t)x(t)) (3.
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Furthermore, let

Q = {flf(t) = fol(t- tf), Ifol > f, tf:[O, T]1* (3.26)
Q = {n| uniix < n} (3.27)
2, = (alola(Ju)] < 8(0), w2 0} (3.28)

In other words, the sensor failure signal f occurs at some time tfc[o,r];
and is represented by an abrupt shift in bias; the noise signal n is
arbitrary, except that it is bounded in norm (3.27); and the model error &
is bounded as described in (3.28). Note that by allowing the noise to be in
the set Qn' it is not possible to distinguish at each instant of time n
ch from f le. Therefore, it is necessary to view the innovations

over a (moving) time window =+, e.g., as in (3.24). One can now calculate
an estimate of the smallest f 1in (3.26) by evaluating (3.13) over (3.17).
The mathematical machinery for this calculation is available [14-16], but

requires the introduction of the foilowing derinitions.

Let H dencte an operator with proper rational transfer function matrix
H(s). Let r_ denote the linear operator defined by

K
77 )1, k= 0 o
(r H)(t) = . (3.2
k 7 lﬂ(;—]LH(S)]' K=1,2,...
S

where :f-][-] is the inverse Laplace transform operator. Thus,
corresponding to H(s), (roH)(t) is the impulse response matrix,
(r]H)(t) is the step response matrix, and so on. It is also convenient
to define the matrix operator,

* 1(t) 1s the unit step function, 1.e., 1(t) =0, t <0; 1(t) =1, t > 0.
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]

T
(Q_ M) () =(; fo [(rkn)(t)l'[(rkH)(t)ldt)W o (3.30)

With definitions (3.29) and (3.30), one can now calculate (3.17). In
order to facilitate the presentation here, we make the simplifying assumption

that the model error 4 1is constant (e.g., DC model mismatch only) and is
sufficiently small so that

i

Teany =1, (1+aT <1 (3.3
or equivalently*

Hvb(s) = L(s) (3.32)
From (3.17) it then follows that

infuL(s)F(s)n > 2 sup HL(S)IN(S) + L(S)A(S)T(s)R(s)H (3.33)
f,4 T a,n T

werw111 now evaluate the above norms in the time domain. Using the relations
[28]

1aAll = jafilAN {3.34)
HABH < ItAQ HBll (3.35)
and the fact that

HAXI <

a(A) < "

o(A) , (3.36)
the left-hand side of (3.33) may be replaced by
Il o [Q_,(L{x - t.))] (3.37)
Tl f

where the inf(¢) has been replaced by the lower singular value from (3.36)
and (3.26) was substituted for f({t). We then have that

* Note that without this simplification, one has to deal with (3.17) directly
which is rather awkward.
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IF] ofQ (L(x-t_ ))] > 2 sup HL(S)N(s) + L(s)W(S)T(S)R(s)N (3.38)
tl f A.n T

Now if we ensure that

[F1 ofQ _(L{x-t_ )] > 2 sup(nL(s)il UN(sYH + na(s)i nL(s)T(s)R(s)n
Tl f AN T T T T

(3.39)

then using (3.35) and the fact that
HA+BN < AN + UBH (3.40)
(3.37) follows from (3.38) since the right-hand side of (3.38) is smaller than

(3.38). Furthermore, if we use the identity [28]

naii, = o(a) = max [A(jw)| (3.41)

w

then the right-hand side of (3.39) may be written using (3.27), (3.41),
(3.28), and (3.30) as

2(max [L(jw)| n + 8IrlalQ_y(LT)(x)]) (3.42)

[

Substituting (3.42) for the right-hand side of (3.39) we now have

IF1200, Ls-t)] > 2 (max [L(@)| A+ 8irla(0, (LT (0 D)

[
(3.43)
where we have used the assumption that
r(t) = r 1{t) _ (3.44)
If we define the threshold as
Igp() = max [L(Jw) [0 + slrl o[Q_(LT)(x)] (3.45)
W .
and
B(+) 20 (L(x-t,)) (3.46)
(t) = T]( (< £ .

then (3.43) may be written as
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2Jth(1)
B8(x)

which is the desired relation (3.14). Q.t.D.

[l > (3.47)

Figure 3.1 shows a conceptual plot of |f| vs. t. Note that in the
presence of noise, the detection window must be large enough to separate noise
from the bias shift due té\sensor failure. Further, there is a detection
window «t, dependent on tf. such that |f] is a minimum. But,
tf is not known: consequently, one can only evaluate the effect of window
selection. Figure 3.1 is also useful in evaluating the filter dynamics. If
the dynamics of the filter are fast, there is a sharper, lower threshold than

when the filter is slow. Figure 3.1 illustrates this critical trade-off in
filter design, i.e., threshold vs. detection window. Figure 3.2 shows a

typical plot of threshold Jth vs. t. In Theorem 3.1, we assumed that

the reference input signal was a step. However, other reference input signals
may be used such as a ramp input signal, as done in the examples below.

Example 3.1: Consider the following scalar example, where

a
Po(s) =57 (3.48)

with proportional plus integral control

a
GC(S) =1+ s (3.49)
and filter dynamics,
F(s) = == 3.50)
s+a (3.
then from (2.27),
a 2 _ 4
G(s) = v S(s) = T30 T(8) = 543 (3.51)
s+a
L(s) = Tiaex  MOS) = Srawk (3.52)
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FAST ESTIMATOR

f

min2 1 e
fmin.I I
| SLOW ESTIMATOR
NQISE |
THRESNOLD\;-______ e 4 e - —— — —
| : ! _
0 tf ;0 A

f(r): smallest size of detectable failure

tf: time fajlure occurs

t: length of detection window

Figure 3.1 Threshold Selector: Minimum Detectable Bias Shift (f) vs.
Detection Window (1)
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THRESHOLD Y

J: Threshold
Jth: Threshold for large detection window

n: RMS noise
t: length of moving detection window

Figure 3.2 Threshold vs. Detection Window
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and

L)T(s) = Ty (3.
Now
p—1 d
r1 LT(t) = [s(s+a+k)]
2 -(a+k)t
- a+k(] - ¢ ) (3.
and
Vres o op-V]__s*a
roue) =7 ls(s+a+k)]
_a ko -(ark)t
T3k Task © (3.
Therefore,
1 T (e, _ —(ask)t ]2, V172
0, LT(x) = (r./; [a+k(1 e )} dt ) (3.
T—tf
=1 a_ . K -(a+k)t{2,.\1/2
Ay Llx = 1) —( r./g [a+k Taek S ] dt) : (3.

and after the integrations

2
0., LT(x) =I:——41——5 [2(a+k)x - 3 - e 2(@KIT 4e'(a+k)’1]1’2
' 2(a+k)
(3.
1 2 2 -2(a+k)(=-t.)
0 L(x-t,) = {———————— [2a°(a+k) (-t,) - ke f
T T ) f
- aake (YOt 2y gakg % 12
(3

have been performed, we obtain
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Since the singular value of a scalar quantity is simply its absolute value,

then

al(Q L] = 1(Q 4 LTI
and
ol (0, L) (v-t)] = 1(Q ; L(x-t)]

Also we have that

_ 2, 2
a(L(3e)) = Y55
(a+k) "+ w
and
max o[L(jw)] = 1 since a > 0 and k > 0
[

Finally, we obtain for the threshold

Jep() =n + &lrl 1(Qy LT)(0)]
or
Jgp(e) = n + 8ir|
a2 ~-2(a+k) -(a+k)t]|1/2
— - [2(atk)r - 3 - e T+ 4e '
2(a+k) 7~
and

B(x) = 1(0_,L)(x)]|
T
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or

—2(a+k)(1—tf)

1 2 2
. Ii—— [2a(a+k)(x-t.) - K%
BEY = 1 2x(avi)’ f
-(a+k) (-t )
- 4aKe TN 4aK]}”2 | (3.67)
The closed-form solution of threshold as a function of the detection window is
given by
2 3. . (71)
th
fFle) = 500) (3.68)
In the 1imit as 1 * =
= a
dep(=) » 1+ 8] l oy I - constant. (3.69)
a
B=) » | oo (3.70)
and
f(=) » Z{nl Légkl + §]r|] = constant. (3.71)

For the case of soft failures, one can derive similar closed-form
expressions. For example, soft failures with a ramp reference input r

2 2 3 2
Jth(r) =n + s|ri ‘ 1 [_ _a_._.s_ e“2(8+k)1 + a - =, a -
Ll 2 (a+k)° 3 (avk)
? 22 2 -(a+k)
¥ -;é——g e~(a+k)1 - A 3 " 2a 3 ((a+k)t+1) €
(a+k) (a+k) (a+k)
32 1/2
' > “ (3.72)
2(a+k)
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(1 2 (rmty) 2 ~2(a+k) (x-t )
pe) = Dl a2 3 2(a+k)’ :
2 2 —(a+k)(r-t.)
s =X 7 (x-t,) + LS 3 (r—tf)2 . 2K s e f
(a+k) (a+k) (a+k)
~(a+k)(t-t.)
» 22 Pl et + 1
(a+k)
2 172
_ 3K : - 2aK : ] } (3.73)
(2(a+k) (a+k) }

Figure 3.3 shows the results for the hard failure with two different

estimator speeds. The parameters being used are a=1, tf=.001. Z=.O1,
§=.05, y=1, K=2 (slow estimator), and XK=10 (fast estimator). This shows

that the threshold selector is also useful in evaluating the filter dynamics.
If the dynamics of the filter are fast, there is a sharper minimum in f and
generaily lower thresholds than when the filter is siow.

The results for soft failures with the same parameters are shown in
Figure 3.4. Note that the behavior is quite different from before. For hard
fajlures, there is a single sharp minimum in f which corresponds to a very
small detection window. For soft failures, f has a hyperbolic type
behavior. There is not a unique minimum, and a larger detection window

compared to the hard failure case needs to be selected. These results are
quite reasonable as they agree with intuition.

3.1.3 A Computer-Aided Design Approach for Computing Optimal Thresholds

It was anticipated that a closed-form solution for the multivariable case
was not possible hence a computer-aided design (CAD) approach was also
developed for the threshold selector analysis. The basic operations involved
in the computation of the thresholds are calculations of frequency response
characteristics of L and transient response matrices of L and LT dynamic
systems. Note that the expression for L is
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L(s) = (I + F(s))")

which is simply the inverse return difference matrix of the filter. To
compute the transient response of systems with transfer functions L(s) and
L(s)T(s), a (minimal) state-space realization of these systems is required.
In the single-input/single-output (SISO) case, a minimal state-space
realization for L(s) denoted by (Arg' Brﬁ' Cri' Dra) can be

written down by inspection. Similarly, LT is a dynamic system whose transfer
function involves products of certain inverse return matrices, etc. as shown
in Figure 3.5. To obtain a minimal realization (Ar. Br’ Cr' Dr) for

this system, the block diagram manipulation facility of CTRL-C [21] called
INTERC was used. To use this tool, the different blocks in the system block
diagram are numbered as shown in Figure 3.5. The various interconnections are
then specified. The procedure yields a non-minimal realization for the system
of order n = 5 in this case. The procedure MINREAL* is then utilized to
obtain a minimal realization for the system which is of order nS =1 and
agrees with hand calculations. Suppose h(t) 1is the impulse response of
L(s)T(s) system corresponding to the state-space realization (Ar' B

r

Cr’ Or) and h](t) is the impulse response of L(s) system

corresponding to the state-space realization (Ari' Brl’ cri'
Drn)' Then the threshold is given by

2(n + 8Ir] Q_ (L))

f = (3.74)
Q_,(L(x-t())

T t t
2(n + am(‘;f [f h(t1)dt]]'{f h(tz)dtz]dt)vz)
f = e 9 0 (3.75)

v . 172
E TS megar) mepeen
0 0 0

*MINREAL uses the staircase algorithm to remove uncontrollable and/or
unobcervable modes.
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where

t
jr h(<)}d(+) = step response of (Ar' Br' c, D) (3.76)
0

and

t

h («)d(+) = st f (A , . , D Y
'/: ]( yd(+) step response of ( e Brn cri rl) (3 )

A procedure was then written in CTRL-C to calculate the threshold curve for
Example 3.1. Figure 3.6 shows the plots of the thresholds generated by CTRL-C

both for the closed form and the CAD technique using the same values of
parameters. The integration step for the CAD plot is .001 sec. The slight

discrepancy in the two curves would disappear if smaller integration steps are
used. Figure 3.7 shows the plots of threshold selector for a slow (a=1,k=1)
and a fast (a=1,k=10) estimator.

Example 3.2: Multivariable Control of a Turbofan Engine

To i1lustrate the idea of threshold selector in the multivariable case, a
model of a turbofan engine and its multivariable control at sea level static
conditions with a power lever angle (PLA) of 36° was chosen [12].

The states of the system are

Xy = Fan Speed, SNFAN (Ny) - rpm

Xy = Compressor Speed, SNCOM (Np) - rpm

X3 = Burner Exit Slow Response Temperature,
Tta10 - °R

Xg = Fan Turbine Inlet Slow Response Temperature,
Tt4.510 - °R

The engine controls are:

Uy Main Burner Fuel Flow, WFMB - 1b/hr

Up Nozzle Jet Area, Aj - ft2
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Uz = Fan Guide Vane Angle, FGV - deg
Ug = Compressor Stator Vane Angle, SVA - deg
Ug = Compressor Bleed Flow, BLC - %

and the engine outputs are

Y] = Fan Speed, SNFAN (N7) - rpm

Yo = Compressor Speed, SNCOM (Np) - rpm

Yy = Burner Pressure, PT4 - psia

Yq = Augmentor Pressure, PT6 - psia

Ye = Fan Turbine Inlet Temperature, FTIT - °R

The normalized system matrices for the example are shown in Table 3.1. The
open loop poles are at -3.1616, -2.8807, -.7036 and -1.0865. There are two
transmission zeros at -1.7294 and -.6456 and were computed usingvthe algorithm
in Ref. 22. It is interesting that one of the transmission zeros of the
system is at -.6456 which indicates why it is not possible to move the slow

temperature pole at -.7036 very far. The multivariable control law is
proportional plus integral [6,7]

1
Gc(s) =C_ + S c (3.78)

p 1

where the (normalized) proportional gain matrix (Cp) and the integral gain
matrix (CI) are as shown in Table 3.2. The (normalized) filter gain matrix
(K) is as shown in Table 3.2 and corresponds to filter poles at

~-11.2034, -8.0777, -2.0051, -.6817

The transfer function matrices of interest are given by

Nominal Plant: P _(s) = C(SI—A)_] B +0D (3.79)
1
Controller: Gc(s) =C_ + S CI (3.80)
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Table 3.1

System Matrices for the Example

A:

-3.9180D+00 4.1886D+00 -4.1148D-02 1.2279D-01
-1.8061D-01 -2.1480D+00 1.5853D-01 6.6994D-04
-1.3190D-01 -2.4056D-01 -6.6630D-01 2.3770D-04
-3.8191Dp-01 -1.0501D+00 -6.7400D-02 -2.0000D+00

B =
5.1991D-01 1.1942D+00 2.1974D-01 -2.4990D-02 -1.7226D-02
3.6266D-01 1.0836D-01 7.2562D-03 -1.2133Dp-02 -7.2114D-03
2.8427D-01 3.3231D-02 5.7770D-03 5.7672D-03 1.6319D-03
9.3743D-01 7.3072D-02 1.7417D-02 2.0418D-02 1.0634D-01
C =
2.2043D+01 0.0000D+00 0.0000D+00 0.0000D+00
0.0000D+00 2.7339D+01 0.0000D+00 0.0000D+00
3.7700D+00 1.0341D+01 -7.6298D-03 -4.3237D-03
8.0543D+00 3.1436D-01 -6.6634D-02 -3.7135D-02
-2.9070D+00 -7.9884D+00 -5.1265D-01 2.6855D-03
D =

.0000D+00  0.0000D+00
.0000D+00  0.0000D+00
.6233D-02 -5.8600D-02
.5762D-03 -2.2963D-02
.5533D-01  4.8290D-02

0.0000D+00 0.0000D+00  0.0000D+00
0.0000D+00 0.0000D+00  0.0000D+00
1.0036D+00 -8.2350D-01 -1.5200D-01 -
9.7674D-01 -5.7450D+00 -3.8500D-01
7.1316D+00 5.5560D-01 1.3247D-01

= o w»m OO
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K -

2.3692D-01
6.8145D-02
2.3950D-02
2.0241D-02

Cp -

-4.6597D-02
-2.2281D-02
-8.5667D-02
9.4676D-02
3.0500D0-01

Cl -

-1.0062D+00
-2.3333D-01
0.0000D+00
0.0000D+00
0.0000D+00

NN

-2.
-4,
.0000D+00
-2.
.33200+00

[oNeNeNoNo]

Filter Gain Matrix (K)

.9395D-01
.8495D-01
.5780D-02
.0917D-02

2423D-01
5208D-07

9942D-01

.0000D+00
.0000D+00
.0000D+00
.0000D+00
.0000D+00

Table 3.2
Proportional Gain Matrix (Cp), Integral Gain Matrix (c1),

(G R

A NeNeReRY|

[oNe NeoNeNe

.0177D-02
.1618D-03
.3172D-04
.0971D-04

.3984D-01
.0000D+00
.0000D+00
.0000D+00
.5286D+00

.0000D+00
.0000D+00
.0000D+00
.0000D+00
.0000D+00

81

O WL Lo oW

O oo~

.7510D-04
.6090D-03
.1026D-05
.4286D-06

.5951D-02
.5198D-02
.1154D-02
.4087D-02
.0000D+00

.7247D-02
.9998D-02
.0000D+00
.0000D+00
.0000D+00

-1.
-9.
.0178D-04
.9605D-03

OO OO0

[eNeNeNeNel

6788D-02
9733D-03

.0000D+00
.0000D+00
.0000D+00
.0000D+00
.000CD+00

.0000D+00
.0000D+00
.0000D+00
.0000D+00
.0000D+00



C(SI—A)—]K (3.81)

Filter: F(s) =
From (2.26)
6(s) = P_(s) G.(s)
C(sI-A) "B + DJ[C_ + + ¢ 3.82
= [C(SI-A) B + DI[C_ + o C[] (3.82)
S(s) = [1 + G(s)] (3.83)
T(s) = [I + G(s)]_] G(s) (3.84)
-1 .-
L(s) = [I + C(sI-A) K] (3.85)
-1 -1
M(s) = [I + C(sI-A) K]  F(s) (3.86)
and
max ofL(jw)] = 11.9122 (3.87)

Again it is relatively simple to obtain a minimal realization of L(s). The
state-space matrices are denoted by (Arﬁ, Br&' Cra' Dri) and are as in
Table 3.3. The poles are at

-11.2034, -8.077, -2.0051, -.6817
and the transmission zeros are at
-3.1616, ~.7036, -2.8807, -1.9865

The block diagram of L(s)T(s) is as shown in Figure 3.8. INTERC was
used to obtain a non-minimal realization of the system. Note that for the
purposes of defining the output to CTRL-C, it is necessary to introduce a
fictitious block (6) in the diagram. The order of the non-minimal realization
is nS = 27. MINREAL was used to yield a minimal realization of order

nS = 10*. The final results for (Ar, Br’ Cr’ Or) are displayed in Table 3.4.
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ARL

Associated

-2.
-7.
-1.
-1.

BRL

CRL

DRL

QW MO

0003D+00
2277D-03
2263D-01
5242D-03

.0366D-02
.3844D-02
.3692D-01

[oNoReRe N )

.8145D-02

.0000D+00
.2204D-16
.3636D-03
.7484D-02
.3267D-17

QOO —~O

Table 3.3

State-Space Matrices (Apg, Brg, Crgs Dpg)

¢
QO OO

.9409D-02
.6573D-01
.0294D-02
.5345D-01

.1104D-02
.5460D-02
.9395D-01

.8495D-01

.3878D-16
.3307D-16
-7.
-6.
-5.

6070D-03
6438D-02
1265D-01

[oR JHeRe Rl

[ ReRelel

N ow

O 00 W RN
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.2386D-01
6.
9.
1.

5511b-01
2306D+00
7314D+00

.0848D-04
.3439D-04
.0177D-02

.1618D-03

.2043D+01
.2204D-16
.7700D+00
.0543D+00
.9070D+00

2.7009D+00
-1.2030D+00
-1.3534D+00
-1.0071D+01

4.3184D-06

2.1049D-05

3.7510D-04

3.6090D-05

6.6613D-16
2.7339D+01
1.0341D+01
3.1436D-01
-7.9884D+00

-1.9631D-03
4,9150D-04
-1.6788D-02

-9.9733Dp-03
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The poles of A are

r
-11.2034 + 0.00001
-8.0777 + 0.00001
-4.7046 - 0.00001
-2.6196 + 1.89971
2.7863 + 0.00001
-2.0051 + 0.00001
-0.7347 + 0.00001
-0.6817 + 0.00001
-0.1034 + 0.00001

and the transmission zeros are
-1.9865, -.7036, -3.1616, -2.8807
which are as expected.

The (QT])LT js then of the form

T t t
LT (L h(t,)dt T h{t,)dt,]dt 172 3.88

0 0 0
where h(+) 1is the impulse response matrix of the (Ar’ Br' Cr'
Dr) system and its (i,j)-th element is the response of the i-th
component of the output to an impulse applied at the j-th component of the
input while all other components of the input are zero and the initial state
is zero. Note that an expression such as:

t
Jr h(t]) dt1 = step response matrix ' (3.89)
0

* This is a numerically delicate problem. The tolerance for MINREAL should be

A B

chosen to be 100 ¢ where ¢ 1is the machine precision.

c D2
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Table 3.4

Final Results for (A., B, Cn, 0.)

Starting at row 1 columns 1 thru 6

-1.8833D+00  2.2461D-02  4.1244D-01 -9.7421D-02  8.6466D-02  6.8098D-04
3.0702D-02 -1.9773D+00  5.3534D-02 -1.2298D-01 -1.4802D-01  4.3156D-02
3.0137D-01  1.1797D-02 -7.7122D-01  2.5823D-02  8.9131D-01  1.5985D-01

-1.6443D-01 -2.1904D-01  7.2472D-02 -6.8127D-01  1.8765D+00  3.0526D-01

-1.3275D-01  8.5894D-03 -5.1391D-02  3.4825D-04  4.0643D-01 -6.3688D-01

-3.1541D-02 -1.1947D-02 -3.1920D-02 -2.5310D-02  2.0529D+00  4.4477D-02
0.0000D+00  1.2095D-01 -1,6299D-02 -4.6428D-02  3.1668D-01  7.7116D-01
0.0000D+00  0.0000D+00  1.4931D-01  1.8504D-02  1.4743Dp+00  1.9028D-01
0.0000D+00  0.0000D+00  0.0000D+00  1.5650D-01 -7.9998D-01  1.4590D-01
0.0000D+00  0.0000D+00  0.0000D+00  0.0000D+00  1.1380D+01  2.1815D+00

Starting at row L columns 7 thru 10
4.7572D-01L  1.7422D+00  2.1100D+00  4.8148D-01
6.1265D-01 -1.5215D+00 -9.1115D-01  1.1621D+00

-2.1959D+00 -1.3057D+00 -2.2261D+00 -5.5108D-01

-2.7577D+00  6.3804D-01 -2.9244D+00 -7.6130D-01
-1.1208D+01  1.9845D+00 -6.1724D+00 -1.0806D+00
-4.9271D+00  1.3970D+00 -1.6149D+00 -1.3658D+00
-9.4908D+00  4.9505D-02 -6.5492D+00 -3.6488D-01
-4.2548D+00 -8.4370D+00 -1.4728D+01 -6.2005D-01
6.6487D-01 -6.2387D-01 -6.3950D+00 1.2374D-01
-1.2398D+01  3.6584D+00 -1.6509D-01 -6.3510D+00
1.2913p-02 -3.5065D-03  6.7581D-02 -9.3985D-03  0.0000D+00
3.5216D-02 -3.5419D-03  9.7594D-02 -1.3254D-02  0.0000D+00

-6.2897D-02  5.7229D-03 -9.2170D-03  1.8487D-03  0.0000D+00

-1.1748D-01 -2.7295D-02 -2.5362D-02 -5.6664D-03  0.0000D+00

-2.6848D-01  1.7852D-02  5.2850D-02 -2.0758D-02  0.0000D+00

-1.8192D-01 -1.4634D-03 -1.2483D-03  1.4683D-02  0.0000D+00

-5.3986D-02 -4.5738D-02 -1.1493D-01  2.1870D-02  0.0000D+00

-1.3163D-01 -5.5903D-04  6.5713D-03 -4.2030D-03  0.0000D+00
5.2728D-02 -5.1607D-02 -1.2889D-01 8.8618D-03  0.0000D+00

-6.2446D-01  -7.4094D-03 -2.7436D-02  1.8488D-04  0.0000D+00
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Table 3.4 (Continued)

Starting at row 1 columns 1 thru. 6

1.9429D-16
-5.0220D-16
-6.8955D-17
1.4572D-16
1.3878D-16

-3.
-3.
-9.
-3.

2.

8858D-16 -1.1796D-16 -3.6082D-16
4001D-16 -1.9663D-15 -1.3704D-16
3675D-17 -2.6877D-16 -1.7781D-17
1919D-16 -2.2291D-16 -1.7347D-16
7756D-16 2.6472D-15 -4.7184D-16

Starting at row 1 columns 7 thru 10

-3.7131D+01

9.5083D+00
£2.7291D+00
-1.5132D+01
-3.3307D-16

DR | -

.0000D+00
.0000D+00
.7478D-02
.9875D-02
.8695D-01

o wo o

-3.
-2.
-1.
-5.

2.

O~ OO0

0531D-16 -8.8840D+00  O.0000D+00
3928D+01 -3.9740D+01 1.5959D-16
0432D+01 -2.3954D+00 1.0780D+00
4949D-01  4.9940D+00 -2.7756D-17
3384D-15 7.6032D+01 -6.9389D-17

.0000D+00  0.0000D+00  0.0000D+00
.0000D+00  0.0000D+00  0.0000D+00
.6983D-01  4.8632D-01 2.6586D-02
.2594D-01 2.8937D-01 1.8044D-01
.2186D-01 1.7470D+00 3.1605D-02

B7

[oNeNoNeNeo)

.4409D-16
.0206D-16
.8981D-17
.6653D-16
.1062D-16

.0000D+00
.0000D+00
.0000D+00
.0000D+00
.0000D+00

2.2204D-16
-6.9389D-18
1.0446D+00
6.8199D+00
-1.6653D-16



is a step response matrix, where the (i,j)-th element of it is the response
at time t of the i-th component of the output when the j-th component of
the input is a step function while all other components of the input are zero
and the initial state is the zero state. 1In this case the step response
matrix is a 5x5 matrix. Similar statements apply to (011)L operator.

We finally compute the multivariable threshold as

f(r) = % ©(3.90)
where

Jep(®) = (max o[L(Jo) N + §1rlal(Q LT (x)] (3.91)

B(r) = gl(Q,,L(x - t.)] (3.92)

il < n (3.93)

a(8(jw)) < (3.94)

The threshold selector results for the hard failure case are as shown in
Figure 3.9. Note the similarity with the scalar case. The results for the

soft failure case are as shown in Figure 3.10.

3.1.4 Summary

This chapter has discussed the effect of model error on detection. An
innovative framework was developed to determine the effect of model error on
sensor failure DIA algorithms analytically. A new concept called threshold
selector was introduced. The threshold selector analysis allows determination
of optimal threshold and size of smallest detectable failure as a function of
model error bound, noise, variance, speed of the filter, class of reference
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Figure 3.10a Threshold - Soft Failure Case, Example 3.2
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input signal, and class of failure signal. The threshold selector constitutes
a powerful design aid and allows one to arrive at a proper balance between
robustness and DIA sensitivity. The analysis in this chapter can be extended
to isolation and accommodation problems, as well as other DIA designs than
those di}scussed here.
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IV. ROBUST FILTER DESIGN FOR DIA

This chapter discusses the design of robust filters for use as part of a
sensor fatlure DIA algorithm. The robustness of the filter is due to
introduction of an internal model as well as frequency-shaping of the LQG cost
functional. The necessity of the internal model was discussed in Chapter II
(see Section 2.2.3). Recall that the presence of an internal model results in
asymptotically unbiased filter estimates. The internal model also provides
robustness with respect to parameter perturbations. However, since other
sources of model uncertainty are present (see Chapters I and II), the filter
may be made more robust by frequency shaping of the LQG cost functional. This
is a result of taking the bound on model error into account. The concepts are
applied to a multivariable turbofan engine exampie.

4.1 PROBLEM FORMULATION

A filter may be made robust by introduction of an internal model and by

frequency shaping. The internal model provides robustness with respect to

parameter perturbations and results in asymptotically unbiased estimates. The
filter may be made more robust by adding dynamics to the filter to compensate
for other types of modeling uncertainty. This can be done in a formal way by
replacing the constant weighting matrices in a standard LQG cost functional
with weighting matrices which are functions of frequency. This is referred to
as frequency shaping. The weighting matrices are chosen to reflect model
uncertainty. For example, if there is unmodeled high-frequency dynamics, the
weighting matrices may be chosen to be constant over the frequency range where
the system model is known accurately and increase as a function of frequency
in the frequency range where the model is less accurate. This section
discusses the design of robust filters for sensor failure DIA which employ
both an internal model and frequency shaping.
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4.1.1 Filter with Internal Model

The internal model principle and its application to robust filter design
was discussed in Section 2.2.3. It was shown that the internal model is
necessary to provide asymptotically unbiased estimates and robustness with
respect to parameter perturbat1ons For a system with unknown constant

measurement biases, an internal model (integrators) may be Antroduced by state

augmentation:

2 ! -

X A : 0 X 8 KP -
ol B -—-r—- -== ]+ | + ) ---1(7 - D) (4.1)
b 0 .0 b 0 KI

- - X

z=1(0C 11 | -] + Du (4.2)

b

where KP and KI are the proportional and integral estimator gains.

4.1.2 Filter Design with Frequency Shaping

Consider the system described by:

state: X = AX + Bu + Byw (4.3)
measurement: z =Cx +Du +v (4.4)

where w and v are independent, zero-mean, white Gaussian process and
measurement noise processes. The standard Kalman filter for this system is of
the form

X = Ax + Bu + K(z - Du - Cx) (4.5)

where K s the Kalman filter gain. We desire to find a filter which
minimizes the performance index,
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=1 f z-cx) Rz -cx) +w 0wy dt
0

g = %./; {wT Q-1w syl R v} dt (4.6)

In this cost function, Q and R are constant matrices independent of
frequency. Using Parseval's theorem, the performance index in (4.4) can be
transferred to the frequency domain

- 7 e NG ¢ v V) e (4.7)
Note that the two terms in the above integrand have the constant weighting at
all frequencies. However, the model may be well known within a certain
frequency range and not known accurately outside that frequency range. It
would then seem desirable to have weighting matrices which are functions of
frequency and be able to reduce the filter gain outside model bandwidth to
reduce sensitivity and increase performance of the filter. It is possible to
consider making Q and R functions of frequency

F-L 7 trGe 076D W o)+ ) RN Ve de (0.8)

A sufficient condition for the existence of a filter minimizing (4.8) is
that Q(jw) and R(jw) be positive semi-definite matrices in wz.

The problem as posed in (4.8) can be converted to a standard LQG problem
as shown below. One can treat w and v as colored noise sources generated
by shaping filters of the form

1/2 Y.
W(jw) = @ "(Jw) W (ju) (4.9)
172, . '
V(jw) =R (jw) V (jw) (4.10)
where W' and V' are white noise processes. 01/2 and RV2 are square

roots of Q and R such that
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0w = 0720w 1020w T (4.11)
R(Je) = R 2(j0) RV %(je)T” - (4.12)

where 01(2(jw) and R1/2(jw) are rational functions of Jw.
In sensor failure DIA, the primary cause for the use of frequency-shaping
is unmodeled dynamics. In our application to the engine problem, Q is taken

to be constant (i.e., independent of frequency) and R 1is chosen as

2
r2 (w0 + r1)
R = - -—3*———-— . r] > r2 (4.13)
1 (w" +1r,)
2
(see Example 4.1). Note that strictly proper transfer functions in
R—1/2(jw) would cause R(jw) to approach zero at high frequency. This
implies perfect measurements. Therefore, in practice, one should choose
-1/2 .
R (jw) to be proper.
Next, the modified measurement z7 is consiaered
Z1 =z -Du=Cx+v=y+yvVv (4.14)
If we define a shaped-measurement vector
' . -1/2
Z,(Jw) = R(Jw) 2, (Jw) (4.15)
and the noise-frée_shaped output
! -1/2 .
Y (Jo) = R(jw) Y(jw) (4.16)
. -1/2
then a realization of the system with transfer function matrix R{jw) is
X, = Av X, t Bv Cx (4.17)
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¢

y =¢C + Dv Cx (4.18)

v Xy
with the shaped-measurement equation

Z, = Cv X, + Dv Cx + v (4.19)

where v' is a white noise process as in (4.10).

_ The combination of equations (4.3) and (4.4), and (4.17), (4.18), and
(4.19) defines a dynamic system driven by independent white noise sources and
1s a standard Kalman filtering problem:

-

X = Ax + Bu + Ke(z] - z]) (4.20)

-~ ~

- |
Xy = Av X, *+ BV Cx + Kv(zl - Z]) (4.21)

! =172

Z is gbtained from z wusing the realization of R

X, = Av X, + Bv Z (4.22)

(4.22)

~N
p—
n

C x_ + Dv z

v "z 1

Since equations (4.17) and (4.18), and (4.22) and (4.23) involve the same
realization, the redundancy in the estimation equations can be eliminated by
defining a new set of states [23]

;' g X, - ; (4.24)

Z v

The overall frequency-shaped estimator equations are then given by
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I
J
_ e’v ! Ker X
——— = e e - ———— - r ————————————— - ——
1, i -~
X (KVDv - Bv) C Av - KVCV
— g
A
5
K v (B -K D D)
PR S A DA [N AN u
(Bv - Kv Dv) (KV Dv - Bv) D
.. gy A’
B B
1s s (4.25)
-~ , _5__
x=[C ! o] = (4.26)
N _CW' x
S
The control law is then based on X
u = KRIxI (4.27)

where KR is the regulator gain. A block diagram of the system showing the
frequency-shaped optimal estimator is shown in Figure 4.1. The filter in Egs.
(4.22) and (4.23) acts as a prefilter on the measurements.

Theorem 4.1: The zeros of R—V2 are the transmission zeros of the
frequency-shaped estimator whenever the sensors are frequency-shaped

individually.

Proof: The transmission zeros of the estimator (with input z and

output x) are given by those frequencies such that the matrix pencil
S(\) loses rank
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sT-A | B
, S S £
S(\) = | (4.28)
C 0
s |
sST-A+K D C  -K_ C [ K D
e v e Vv = e Vv
S(n) =| - (KD, -B)C sT - A, + K, C, ! (8, - K, D) (4.29)
I 0 i 0

By performing elementary row and column operations, S(A) js equivalent to

p— | ) : -
sT - A 1 0 K. D
1 { e v
: T
~ - - | -
S(\) 0 i (sT - A, + 8, 0, C) i B, — Ky 0, (4.30)
' R
|
o1 0 | 0 ]
-1
which loses rank at the location of the eigenvalues of (A, + 8, 0, C))
Which are the zeros of R 72 since it is diagonal, as are A, B, Cy
and Dv' Q.E.D
. -1/2
In the case of individually frequency-shaped sensors, R would be
diagonal and, if a frequency shaping of first order is introduced in all
sensors then
=172 Pi(s + 21)
e TRy (431
: j i
and hence
Av‘= diag {Pi} (4.32)
Bv = I : (4.33)
Py(Zy - 7))
c, = diag { 7 } (4.34)

101



P1
D, = diag f; (4.35)

Notice that Riils have unity D.C. gain. These will introduce lag

compensators into the measurement loops provided that

[z.1 > |P

1 N (4.36)

which implies more noise at higher frequencies. Frequency shaping then
improves the robustness properties of the system at higher frequencies, while
maintaining performance at low frequencies. Notice that this is similar to
introduction of first-order lags of classical control, but is inherently

multivariable.
4.2 EXAMPLE 4.1

This example illustrates the ideas of internal model and frequency
shaping presented in Sections 2.2.3 and 4.1, respectively. The internal model
provides for asymptotically unbiased estimates in the presence of biases and
parameter errors, i.e., the estimate of the engine outputs track the output

measurements (i.e., z - ; + 0). Frequency shaping provides for robustness
with respect to unmodeled dynamic uncertainties. The combination of the
internal model and frequency shaping results in the desirable robustness
properties of the filter.

A turbofan engine model and its multivariable control law (the same as in
Example 3.2) at sea level static condition and PLA=36° was chosen for design
purposes. Figure 4.2a shows a steady-state run corresponding to Revision 2 of
the previous program [9]. This figure shows that the estimate of N1, N2, PT4,

PT6, and FTIT do not track the measurements (i.e., z - z # 0 asymptotically).
If an internal model (integrators) for biases is introduced, then the
augmented system has the form of (4.1) and (4.2). The estimator gains were
computed using CTRL-C [21] and are shown in Table 4.1. Figure 4.2b shows a

steady-state run with the internal model present in the engine/control model.
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o
8. 3740
4. 5611
1.3178

0. 0701
2 4511
0. 0009
0.0121
0. 0019
0. 0945

Table 4.1

Kalman Filter Gain Matrix

- 3.1891 0. 2311 0. 0303 —0.63141
12. 4951 0. 4499 0.0173 -1.2775
- 2.0933 0. 0836 0. 0048 -0. 2963
-3. 0033 0.C006 0. 0001 -0. 0004
1. 0903 0. 0253 -0. 0018 -0. 0429
2.9770 0. 0051 -0. 0014 0. 0421
0. 0476 1. sga22 0. 0000 -0. 0013
0 0034 0. 0001 1. 2247 -0. 0003
-0. 1824 -0. 0054 -0. 0001 1.0077_

i Filter

i Internal Model
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(This corresponds to Revision 3 of the previous program [9].) Figure 4.2b
shows that the estimates now asymptotically track the measurements (i.e.,

~

Z -2z ~>0) for all outputs. Note that there is a dip in Figures 4.2a and
4.2b, which 1s due to inftialization transients of the engine simulation.
Figures 4.3a and 4.3b are transient runs at sea level static condition and a
PLA step from PLA=36° to 52°. Fiqure 4.3a shows transient responses with no
fnternal model and Figure 4.3b illustrates the responses with the internal
model present. It can be seen from Figure 4.3b that the estimates follow the

measurements, i.e., z » z ) 0, in steady state.

There are now two internal models in the closed-loop system (i.e.,

integrators both in the filter and controller. Figure 4.4 is a block diagram
of the system showing the two internal models. The presence of the internal

-

model in the filter ensures z - Z 2 0, and the presence of the internal
model in the controller ensures z - r » 0, which implies that r - z - 0 in
steady state. Note that the controller has a partial internal model, j.e. it
only has integrators on N1 and P76 outputs (see form of CI in Table 4.2).
Therefore, even though all the estimates are unbjased, we can only guarantee

zero steady-state tracking error in N1 and PT6 as seen in Figure 4.2b

and 4.3b. Note that in Figure 4.2b and 4.3b for the PT6 output, z - z error
has become zero whereas z - r error has not. This is because the integrator
(in the control law) associated with PT6 output has a small gain which

explains why this error is slow in decaying to zero (for details, see Ref. 9).

We can now proceed to add frequency shaping in the filter. Based on the
results of a bound on model error (Appendix A), we chose to frequency-shape

all sensors using

2172 10x(s_+ 20w)
Ris 05) = S0u(s + 10m) (4.37)

i.e., a first-order lag with breakpoint at 5 Hz. The frequency-shaped system
matrices {AV, Bv' Cv, Dv} are shown in Table 4.3, and Table 4.4 shows the
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Table 4.2

Proportional and Integral Gain Matrices

. 4632
. 0002
. Q061
. 0023
. 0000

. 0012
. 0020
. 0000
. 0000
. 0000

C OO0

[oRoNeoNe o]

. 9502
. 0000
. 00CO
. 0068
. 0001

. 0000
. 0000
. Q000
. 0000
. 0000

=&2.

[eNeNoNo)

[oReNeReNeJ

110

6000

. 0000
. 0000
. 0000
. 0025

. 0000
. 0000
. Q000
. 0000
. 0000

o000

. 0927
. 03352
. 3429
. 1640
. 0000

. Q000
. 0300
. 0000
. 0000
. 0000

0000

o NeNoNeNo

. 0000
. 0000
. 0000
. Q000
. 0000

. 0000
. 0000
. 0000
. 0000
. 0000



Table 4.3

ORIGINAL PaAGE 13
OF POCR QUALITY

Frequency-Shaped System Matrices

AV -
-3t 41959 0. 0000 0. 0000 0. 0000 0 0000
0.0000 -31.41%9 0. 0002 0. 0000 0. 0000
0 0aQ0 0.0000 -31.4159 0. 0000 0. 0000
0. 0000 0. 0000 0.0000 -31.4139 0. 0000
0. 0000 0. 0000 0. 0000 0.0000 -3i 4139
: 1% -
i 4] Q. [+ o]
(V] 1 o} 4] [o]
o] g i. g o}
[o] [o] Q 1 0.
0 a 0. G. 1
cv -
1S 7089 0. 0000 0. 0000 0. 0000 0. 0000
0 0003 15 7080 0. 0009 0. 0000 0. 0000
0 0000 0.0000 L3 7080 0. 0000 0. 0000
0. 0000 0. 0000 0.000Q 157080 0. 0000
0. 0009 0. 0000 0. 0000 0.0000 15 7080
ov -
0. 5000 4. 0000 0. 0000 0. 0000 0. 0000
0 0000 0. 5000 0. 0000 0. 0000 0 0000
0. 0000 0. 0000 0. 5000 0. 0000 0. 0000
0. 0000 0. 0000 0. 0000 0. 5000 o 0000
0. 6000 0. 0000 0. 0000 0. 0000 0. 5000
Table 4.4
Frequency-Shaped Filter Gain
KK -
ra 2740 3 1891 0. 231t 0 0303 -0 4314 )
4 3611 12 4951 0 4499 0. 0173 -1. 27793
1 3178 2. 0933 0. 0834 0 0048  -0. 2943
0.0701 _ -0 0033 0. 00064 0.0001__ -0 0004
2. 4511 10903 — 0 0253 -0 008  -0. 0429
0. 0009 2.9770 0 0051 -0 0014 0. 0421
0 0121 0. 0474 1 5822 0.0000 -0. 0013
0. 0019 0. 0034 0. 0001 1.2247  -0. 0003
-Q 0945 -0 1824 _ -0 0054 _-0.0001 1. 0077
0 2647 B oYI8 T 0 o058 T 0. 0007 T =0. 3747
0. 0960 0. 3518 0. 0099 0.0003 ~-0.0272
0. 0059 0. 0095 0. 0489 0. 0000 ~0 0010
0 0004 0. 0002 0 0000 0 0379 0. 0000
-0. 0242 -0.0374  -0.0013  -0. 0001 0. 0337
[« {F‘ner
Ky {lncernax Model
L kK lFrequency Shaping

v |
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frequency-shaped Kalman filter gain matrix. The closed-loop filter poles are
shown in Table 4.5. Figure 4.5 shows the transient engine response corres-
ponding to the closed-loop system with both internal models and frequency
shaping. Figure 4.5 shows the effects of the frequency shaping in this case,
ji.e., the engine transient response has been slowed down slightly.

4.3 SUMMARY

In this chapter, we have discussed the design of robust filters for DIA.
The robustness properties of the filters are twofold. First, the filter is
made robust with respect to parameter perturbations, using an internal model.
This is an extension to internal model principle of multivariable robust
servomechanism theory. The robustness property achieved is due to creation of
certain structurally robust blocking zeros. Second, the filter was made
robust with respect to other sources of uncertainty via frequency shaping.
This robustness property is achieved also through creation of certain
transmission zeros. The results were applied to a multivariable turbofan
engine example.
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Table 4.5

Closed-Loop Filter Poles

-23. 47846 + 4, 9215i
-23. 4786 - 4, 92151%
-13. 1757 - 0. 0000i
=29. 4962 + 0. 00001
-0. 1160 + 0. 0000i
-2. 0722 - 0.00Q00i
-1.8294 - 0. 00001
-0. 9693 + 0. 01441
-0. 9693 - 0. 01441
-1. 5835 + 0. 00001
~1.2255 + 0. 0000i
=31. 4027 + 0. 00001
=31. 39680 + 0. 0000i
-31. 3860 + 0. 00001
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V. EVALUATION RESULTS

5.1 INTRODUCTION

This chapter evaluates the results of this program through the validation
of the threshold selector results of Chapter III. Before the actual
validation, it is useful to summarize the results of the report and put the
evaluation results into perspective.

This report has presented the results of recent research in the
development of robust fault detection, jsolation, and accommodation (DIA)
algorithms for sensor failures. Specifically, tools and procedures have been
developed that allow a designer to use information about model uncertainty
when designing a sensor DIA Togic. This is a major step in developing an
ability to design and implement a practical fault-tolerant control system.

A DIA system, as treated in this report, consists of three main
components:

(1) a filter that compares measurements to predictions (based on a
model) to produce an innovations sequence;

(2) a norm computation that reduces the innovations to a single
measure useful for comparing against a threshold; and

(3) a threshold.

The goal of the design process described in Figure 1.9 is to select a
combination of these three components to produce'a system that has adequate
performance (smallest magnitude of failure detectable, speed of detection, and
minimum false alarm rate) without being excessively complex.

The emphasis of this reported effort has been to provide tools and
procedures that allow the design process of Figure 1.9 to be carried out.
Specifically produced have been techniques that
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(1) permit the performance of filter innovations measure combination to
be computed analytically using an estimate of the model uncertainty
in the system; and

(2) permit a filter's performance to be improved by incorporating a
knowledge of the modeling error bounds in its design.
The first was addressed in Chapter III under the heading of the Threshold
Selector; the second was addressed in Chapter IV.

Selecting the best filter/innovations measure combination is a multistep
and iterative process (Figure 1.9). The filters used to generate the
innovations sequences can vary in complexity from constant gain types to ones
that include frequency shaping and internal models to a fully adaptive design.

As a general rule, increased complexity is required to improve the filter
performance. The study reported in Ref. 9 dealt with constant gain filters.
This report described the use of frequency shaping and internal models to
improve filter performance in the presence of modeling errors. Adaptive
filter designs are left for future studies.

Many measures of the size of innovations sequence are also possible for
consideration. Examples include weighted sum squared residual (WSSR),
1ikelihood ratio, and generalized likelihood ratio. The performance of each
in combination with the different filters could be different and should be
investigated before a final system is designed. Note, however, that the only
measure of the innovations sequence dealt with in this effort in the WSSR
norm. This is the same as that used in Ref. 9.

While the filter and size of innovations measure selections are clearly
critical to designing a successful DIA system, it is the ability to evaluate
analytically the performance of the combination that makes the design process
of Figure 1.9 feasible. This capability is what is provided by the Threshold
Selector described in Chapter III. It produces an estimate of the sizes of
the smallest failures that can be detected and a measure (i.e., threshold)
against which the norm of the innovations sequence can be compared to
determine the presence of a failure.
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As an example, the threshold selector can be used to predict the
performance of the robust filter designed in Chapter IV. Figure 5.1 shows the
threshold selector results for a soft failure using the robust filter with
internal model and frequency shaping designed in Example 4.1. This figure
shows that the robust filter is capable of detecting failures of smaller size
compared to the constant gain filter developed in Ref. 9 (compare Figures 5.1
and 3.10).

5.2 VALIDATION OF THE THRESHOLD SELECTOR

Because of its critical role in the design process, the ability of the
Threshold Selector to predict realistic thresholds has been validated
experimentally. The goal was to demonstrate the fact that induced failures
are detected and that false alarms are avoided.

The filter/norm chosen for this demonstration is the same as that
developed in Ref. 9 for a multivariable turbofan engine. Specifically, the
filters are constant gain filters with no frequency shaping or internal
models. The norm is a WSSR. The flight condition is sea Jevel static at 36°
PLA.

The reason for this filter/norm choice is that it allows direct
evaluation of the Threshold Selector only. Reasonable thresholds were
determined empirically for this combination and a full evaluation was
performed in a previous program [9]. Consequently, there is a data base
against which to compare the results obtained with a new threshold implemented.

Compared in Table 5.1 are the thresholds determined empirically in the
previous program [9] and the thresholds computed with the Threshold Selector.
Note that while the results are of similar magnitudes, the Threshold Selector
computed values are smaller. This indicates that failures of smaller
magnitude can be detected (and faster) with the filter/norm combination than
were previous]& expected. Required to be validated experimentally is that
false alarms are not induced as a result of decreasing the thresholds.
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Figure 5.1 Threshold Selector Results for Robust Filter with Internal Model
and Frequency-Shaping

118



Table 5.1

Comparison of Sizes of Thresholds

TYPE OF FAILURE SIZE OF THRESHOLD USED IN SIZE OF THRESHOLD COMPUTED
REVISION 2 OF REF. 9 BY THRESHOLD SELECTOR
HARD 2.0 .62
SOFT 1.43 .62

Our evaluation consisted of the comparison of failure detection times for
various failures using the thresholds in Ref. 9 and the thresholds computed
using the threshold selector. A turbofan engine dynamic model (the same one
as in Examples 3.2 and 4.1) at sea level static condition and PLA = 36° was
used for this evaluation. Figures 5.2 through 5.4 compare the response of the
same OIA algorithm (i.e., the same filter/norm combination) for the two
threshold levels presented in Table 5.1. Figures 5.2 and 5.3 present selected
responses to a hard failure in N1 for the DIA scheme using the empirical
threshold and the Threshold Selector computed threshold, respectively.

Figures 5.4 and 5.5 present the results for a hard failure in N2. Figures 5.6
and 5.7 present the results of a drift failure in N1. Figures 5.8 and 5.9
present the results of a drift failure in PT4. Note that key events
characteristic of all the plots are indicated in Figure 5.2.

The results are as expected and are summarized in Table 5.2. Llarge step
failures create a WSSR norm of the innovations sequence larger than the
threshold in both cases and trigger a failure indication within one window
width of the WSSR norm. The size of the norm has no effect on the
performance. For drift failures, however, the smaller threshold does permit
more rapid detection of the failure.
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Figure 5.6 Failure Transients for N1 Sensor Drift Rate of 300 RPM/second at
Sea Level Static Condition and PLA = 36° using Method [9] (see
Table 5.2)
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Table 5.2

Comparison of Detection Times

TYPE OF FAILURE DETECTION TIME (SEC) USING DETECTION TIME (SEC)
METHOD (REVISION 2) [9] USING THRESHOLD SELECTOR

N1 HARD FAILURE 0.002 0.002
+1000 RPM STEP

N2 HARD FATLURE 0.002 0.002
+1000 RPM STEP

N1 DRIFT RATE OF 4.466 1.734
+300 RPM/SEC

PT4 DRIFT RATE 4.584 2.042
OF +10 PSI/SEC

Of primary importance in this comparison is that this increase in
performance was gained without a penalty of false alarms. This verifies that
the Threshold Selector does produce a useful estimate of the threshold and can
replace the previously required empirical approach to threshold calculations
to accommodate modeling errors in addition to noise considerations.

5.3 SUMMARY

This chapter has presented evaluation results for this research effort.
The results of this study were summarized at the beginning of this chapter.
The evaluation validated the threshold selector results. It was verified that
the generally lower thresholds, predicted by the threshold selector analysis,
results in improvements for soft failure detection. This is done without
triggering false alarms. The detection time was lowered by at least a factor
of two for soft failures compared to previous techniques.
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VI. CONCLUSIONS

This report contains the results of recent research in the area of robust
fault detection, isolation, and accommodation for sensor failures. The
results have been illustrated by application to sensor DIA for an aircraft
turbine engine. At the center of attention is model uncertainty. Model
uncertainty has been singled out as the main source of problems with previous
DIA algorithms as it affects performance. Various sources of mode]
uncertainty were discussed. The effects of model uncertainty are represented
by a bound as a function of frequency. This is consistent with recent
approaches in robust control theory. The effects of model uncertainty on
stability, asymptotic tracking, and tracking performance was studied and new
performance robustness measures were derived. The effects of model
uncertainty on failure detection were also studied. The main machinery used
was robust multivariable control theory. Fundamental results were derived for
selection of optimal thresholds in innovations-based DIA algorithms. The
estimator logic used in the DIA technique was made robust by providing
robustness both at low and high frequencies. Evaluation results show
improvements compared to previous techniques.

The general contribution of this research has been the extension of
recent advances in robust control system design to sensor DIA and estimator
design. The specific contributions are:

- analysis tools with which to quantify the trade-off between
performance robustness and DIA sensitivity;

- design methods which allow higher levels of performance
robustness to be achieved for given levels of DIA sensitivity;

- demonstration of the applicability of these tools using an
aircraft turbine jet engine multivariable control example.

A powerful synthesis tool has been developed for DIA algorithms. This would
allow for optimal achievable levels of performance. In particular:
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- a "threshold selector” has been created which quantifies the
effects of uncertainty on DIA performance;

- measures have been derived to quantify the uncertainty and the
performance robustness.

The advances to robust estimator design to achieve higher levels of
performance robustness include

- the development of estimators using the "internal model
principle® to achieve asymptotic convergence despite model error;

- the incorporation of frequency weighting in an LQG cost
functional to modify an estimator design for DIA.

The results were demonstrated on a dynamic simulation of a multivariable

turbofan jet engine example and showed improvements over previous techniques.

The results of this research can be pursued in other directions. It is
possible that even higher levels of performance are achievable in some cases
by an adaptive technique (see Figure 1.9). It would also be interesting to
pursue the idea of this research in a decentralized control strategy. This is
important as integration of flight and propulsion control systems is being
considered [25].
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APPENDIX A
GENERATION OF BOUND ON MODEL UNCERTAINTY

A.1 SYSTEM UNCERTAINTIES

A1l nominal design models of a system (plant) contain some degree of
modeling errors. High fidelity models represent a plant more accurately than
others. These errors are called "model uncertainties." There are, in
general, two types of uncertainties: structured and unstructured. For
example, the former refers to model parameter uncertainties, whereas unmodeled
dynamics 1ies in the latter category. Reduced order modeling, linearization
about operating points, neglecting nonlinearities, all result in contributions
to either structured or unstructured uncertainty.

The model uncertainties can be broadly grouped into two categories:

(1) uncertain external inputs

- reference commands
- environmental disturbances
-~ bjases or drifts in a failed sensor

(2) uncertain internal dynamics

- plant model errors

- sensor failures

- controller or estimator reconfigurations from DIA

The representations of the model uncertainty vary according to how well

jts structure is known. For a highly structured representation, e.qg.,
aerodynamic coefficients in flight control, engine model parameters in engine
control, the uncertainty can be represented by defining a range of variation
in the parameter space. For less structured uncertainties, bounds on errors
can be defined. The model uncertainties can in general be classified as
additive or multiplicative. The additive type of model uncertainty is defined
as follows
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P(s) = P (s, c*) + A(s)

with

ala(s)] < 5 (w) o >0 (A.1)

where P(s) 1is the transfer function of the plant, Po(s, c*) 1is the

nominal parameterized model of the plant, with structured uncertainty c¢*. 1In
other words, Po(s, c¢*) 1s a known function of c¢*, but the values of <c¢*
are uncertain. The function A(s) 1s the variation in the nominal model,

Po, and is an unstructured uncertainty. It is unknown but Timited to be

some function bounded by ¢ (w), where & (w)}) 1is a positive

scalar function which defin:s a bound on P: in the neighborhood of P. It

can be viewed as a frequency dependent "radius" of uncertainty of the true
plant, P(s), about some model Po(s, c*) for all c*. Figure A.la
illustrates the additive type of uncertainty. In general a good model will be
well known at low frequencies where & (w) will be small, and less well

known at high frequencies where & (w)a will be large. This type of

curve is characteristic of unmode]gd, uncertain, high-frequency phenomena.
Note that in equation (A.1), the structure of A(s) 1is not defined, and may
be caused by a variety of mechanisms (for example, parameter changes,
unmodeled dynamics, etc.). The two types of multiplicative uncertainties are
the input multiplicative and the output multipligative and are given by the
following equations.

Input multiplicative:
P(s) = PO(S. c*) [1 + 4a(s)]

with

afa(s)] < 6m(m) Yw>0 (A.2)

Qutput multiplicative:

P(s) = [I + A(s)] Po(s, c*)

with
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Figure A.la Additive Perturbation

Figure A.1b Input Multiplicative Perturbation

o e
Py P I +4 - Y

Figure A.1c OQutput Multiplicative Perturbation
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ala(s)] < 8, () Yo >0 (A.3)

Figure A.1b and A.1c shows the representations of the multiplicative type of

uncertainties.

For the multivariable jet engine example [12], an output multiplicative
bound was determined. This bound takes into account both the structured and
unstructured uncertainties. This will represent a bound on such model
uncertainties as, unmodeled dynamics, parameter variation in system matrices
(A, B, C, and D), unmodeled nonlinearities, reduced-order modeling, and

linearization.

A.1.1 Why Determine Bounds on Model Errors?

Under the NASA contracts NAS3-22481 and NAS3-23282, the feasibility of
the DIA concept for application to the multivariable jet engine was
demonstrated. However, several problem areas were identified which are stated

below:

(1) steady-state and dynamic mismatch of the simplified nonlinear
models of the engine;

(2) steady-state estimator errors, with no sensor failures;
(3) instabilities when accommodating failures;

(4) accommodation inaccuracies; and

(5) missed detections and false alarms.

These problems arise from system uncertainties.

The fundamental control design problem is to establish the relationship
between performance, robustness, and system uncertainty. The first two are
conflicting requirements and need trade-off or design compromises to meet the

system requirements. A unified method of approach is to:

138



(1) establish quantitative relationships between performance,
robustness, and system uncertainty;

(2) recognize that the plant model error, sensor failures, and DIA
reconfigurations all belong to the same class of system
uncertainty.

Figure A.2 illustrates how the system uncertainties can be isolated. The
dynamic uncertainties such as model errors, sensor failures, and DIA
reconfigurations, are "inside" the system and function as a feedback loop
around the "interconnection" system. This system maps the external and
internal uncertainties into the outputs, i.e., tracking error and filter
residuals. The dynamic uncertainties propagate in a specific way so as to
cause a quantifiable uncertainty about the map from the input into the
outputs, provided bounds can be found for the dynamic uncertainties. These
bounds are obtainable from simple input/output system tests, and are to be
used in robustifying the filter/s and determining the thresholds.

A.1.2 Model Error Bound for Output Multiplicative Error

A bound for model uncertainties can be obtained experimentally as shown
in Figure A.2. In Figure A.2a, P represents a high-fidelity simulation of
the plant whereas Po is a simplified low-order linearized model of the
plant. A sinusoidal test input is applied to the plant and the model. The

error is defined as

e P(s) &u - Po(s, c*) 8u

(I + A)Po(s. c*) Su - Po(s, c*) &u

APO(S. c*) Su (A.4)

The normalized error, &§(w), provides a worst-case frequency-dependent

bound, and is given by

el
§(w) = max 2 (A.5)

*
u i Po(s, c*) Su ",
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where il is the norm, and &(w) 1is the bound on model
uncertainty. Figure A.2b shows a typical bound on the model error

uncertainties, which includes structured and unstructured uncertainties.
A.2 QUANTIFICATION OF MODEL ERROR UNCERTAINTIES

This section describes a method to quantify the model error uncertainties
using the experimental procedure given in Section A.1.2. The error bound was
determined for a jet engine model [12]. A description of this model is also

included in this section.

A.2.1 Computation of Model Error Bound using the Turbofan_Model

An experimental procedure to determine a bound on model error was
discussed in Section A.1.2. A nonlinear fourth-order engine model (HYTESS - A
Hypothetical Turbofan Engine Simplified Simulation [12]) was used to represent
the physical plant, i.e., the turbofan engine (see Figure A.2a). The model
P0 was represented by a linear model of the engine at sea level static
f1ight condition and PLA at 36° (0/0/36). By applying the same sinusoidal
input to P and Po, an error signal between the outputs is computed using
Eq. (A.4). A frequency-dependent error bound is determined using Eq. (A.5).

The procedure for determining the error bounds is shown in Figure A.2. A
step-by-step discussion follows.

The states of the system are:

x1 = Fan Speed, SNFAN (N1) - RPM

x2 = Compressor Speed, SNCOM (N2) - RPM

x3 = Burner Exit Slow Response Temperature, Tt4lo - °R

x4 = Fan Turbine Inlet Slow Response Temperature, Tt4.57o - °R

The engine inputs are:

ul = Main Burner Fuel Flow, WFMB - 1b/hr
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u2 = Nozzle Jet Area, Aj - ft2

ud = Fan Guide Vane Angle, FGV - deg

u4 = Compressor Stator Vane Angle, SVA - deg
u5 = Compressor Bleed Flow, BLC - %

The engine outputs are:

yl = Fan Speed, SNFAN (N1) - RPM

y2 = Compressor Speed, SNCOM (N2) - RPM

y3 = Burner Pressure, PT4 - psia

y4 = Augmentor Pressure, PT6 - psia

y5 = Fan Turbine Inlet Temperature, FTIT - °R

The system matrices for the linear model and HYTESS are shown in Tables A.1l
and A.2, respectively.

A.2.2 Description of the Engine Models

Two models of a jet engine are discussed in Section A.2.1, namely, HYTESS
and a linear model at 0/0/36. Both models are fourth-order state space
models. HYTESS is a nonlinear model generated by scheduling linear mode)
matrices (A, A—1B, C and D) over the flight envelope using normalized
variables (such as &, o, P/8, T/e, N/ve) as scheduling parameters.

The linear model was extracted from HYTESS at the flight condition of altitude

= 0 feet, Mach No. = 0, and PLA = 36°.

The Tinear fourth-order state space models are of the form

X

Ax + Bu

Cx + Du

<
n

where
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Table A.1l

Jet Engine System Matrices

-3. 9180 2. 9550 -1. 35450 &, 2260

-0, 2360 -2. 1480 8. 4370 0. 0482

-0, 0035 -0, 0043 -0. 6643 0. 0003

-0. Q073 -0.01464 -Q. 0499 -2. 0000

1. OD+Q4 =«

0. 0001 0. 3071 -Q. 0048 0. 0021 -1. 3290
0. 0001 0. 0395 -0. 0003 0. 0015 -Q. 7884
0. 0Q00 0. 0002 Q. 0000 0. 06000 Q. 0034
0. 0000 0. 0004 0. 0000 0. 0000 Q. 14618
{. 0000 Q. 0000 0. 0000 0, 0000

0. Q000 1. 0000 0. 0000 0. 0000

0. 0147 0. 0284 -0. 0011 -0. 0009

0. 0031 0. 0001 -0. 0010 -0. Q007
-0Q. 0377 -0. 0731 -0, 2495 0. 0018

0. 0000 Q. 0000 0. 0000 0. 0000 0. 0000
0. 0000 Q. 0000 0. 0000 0. 0000 0. 0000
0. 0087 -8, 2330 0. 1824 0. 1855 -175. 8000
0. 0008 «5. 74350 0. 04462 -0, 0032 -6. 8890
0. 20350 18. 0 -1.7080 482, 9000

5200 -0. 5299
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Table A.2

Simplified Nonlinear Model Matrices
FULL ENVELOPE MODEL OF A MATRIX

F(1.4). = =0. 9483E=1/DL1-0. 1886E~2#XPTo#%2-2. 4463
F(2. 1) = —-0. 18B20E-3¥XN1+0. 27468E-9+XPTo# XN ##2+0. 77214
F(3.1) = -0  2201E-2#XPT46+0. B295E~-44XTT45~0. 8207E~-1
Ft4,1) = 0. 4353E-2/DL1+0. 1Q036E-B#XPT4#«3-0. 2724E~1
F(l,2). = =0, 2596E+1#TH1+0, B159E~-1/DL1+5. 78 ~
£(2,2) = ~0.2381E+1/TH1=0_234BE~7%XN1##2+1. 549

F (3, 2F =<0, 409 3E-2#D:1=0:8174E~2/DL 1 +0. 1212E-1
F(4,2) = -0. 1010E-14DL1-0. 2312E~-1/DL1+0. 2994E-1
F(1.3) .= =1 597 . L )

F{2,3) = -0. 1569/DL1+0. 2382E-1#XPT4+4. 2890

F(3,3) = -0. 6377/DL1+0. 5218/TH1-0. 3229
F(4,3) = =-0. 1155
F(1,4) = =0. 1143/DL1+0. B34FE-7#XNi1##2+1 074
F(2,4) = 0.6013E-1
F(3.4) = Q. 24632E-2
F(4.4) = =0. 1914E+1/DL1+0. 1564E+1/TH1~-1. 568

FULL ENVELOPE MODEL OF A™' B MATRIX
FIGtL, 1) = O, 9327E-3#XN1-0. J145E-1]1#XN1##3-& S&
FIG(2,1) = ~0. 3616#TH1-0. 3850E+8/XN1#%#2+0. 4541
F1G(3.1) = 0. 1183E-3#XPT4-0. 3463E-F#XPT4#43-0 372E~-1
FIG(4,1) = O, 9333E-3#XPT&~-0. ?734E~FeXNI«XFTSH#&2-0. 30&E-1
FIG(1,2) = —0Q. 2971E+2#XPT6+0. 2Q182E+2/ {TH1¢DL1)-2460. 4
FIG(2,2) = 0. 1121#XN1-0. 1545E-2#XPT4¢XPTo#%2-721. 8
FI15(3,2) = 0. 5845E-1#XPT4-0. 719B8E-4#XPT44XPTo##2-] 558
FIC(4,2) = 0. 3761#XPT6~0. S675E-4xXPTI#XPTbux2—-1 418
FIG(1,3) = 0. 15627#XPT4-0. 4133E-44XPT4#XPT&#%2-2. 104
FI1G(2,3) = Q. 275#XPT&~6. 304
FIG(3.3) = 0. 1306E-1#XPT46&-0. 2379
FI16(4,3) = 0. 10468BE-1#XPT46—0. 1881
FIG(1,4) = O0.B&870E+1/TH1+0. S090E-1#XPT4-25. 19
FIG(2,48) = O 114BE+3#TH1+0. 1092E+3/TH1-220. 7
FI1G(3.4 = O.2010#TH1~-0. 1252E~-2#XPT4+0. 2459
FIC(4,4) = 0. 9385E~1#TH1-0. 11S7E-2#XPT4+L. 2551
FIG(1,5) = O.5357E+4/(DL1«RTH1)-735. 87
FIG(2,5) = Q. 3754E+4/(DL1#RTH1)+137. 9
FIG(3,5) = -0 9392E+2#(RTH1/DL1)~0. 7399E+1#{TH1/DL1++2)+B 3C
FIG(4,3) = -0, B324E+2#(RTH1/DL1)~0. 3F902E+1%(TH1/DL 12249 7
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Table A.2 (Continued) ORIGINAL PAGZ o
OF POOR QuAILITY

FULL ENVELOPE MODEL OF C MATRIX

il 1} 1.

H(2. 1) « O

HE 1) = =0, 201461 /XPTA-0, 2370E-3eXPTLerPTH+0, 4J44E~-¢
M4 1) = 0. 3J18/XPTA—0. 4930€-100IM] 002+0, Se36&~2

HIS. 1) = O.0714€=36KPT4+0. 17046L+2/1PTA-Q, 047

Hide 1) @ O, PLIB4/THI =0, JA9LE-4/TIPT40e2+0. I514

H(Z. 1} & O, 3119€=2/XPT4=0, 2970E=1 71PTaoe DD T2646E~4
‘Hli.2) = O,

H(2.2) =

1. -
H(De2) = _ 0. 2913E~1/THI +0. 4444E€-32P T4 0. 1 TDE-~L
(R, 29520, 20Q0C~7oXN1 -0, bbbiE~1/1AT4-0, L133E~2
HESe2) = =0, 1327€~3eXTT43-0. | PO7E=4/INL+O. 401 4
Hebe 2) 0. 3297€-i

H(T.2) = O. 2BIIE=-I/0L 140, 4102/XPTdee2+0. ISTE~4
H(1.3) = O

H¢2.3) - O.

H(3. ) = <0, 7370€-TexkPTéees2-0, 4847€-3

M4, T) = =0, J204E-6#XNT+O. 2I99€E-2

M(3.3) = 0.3t 1E~teTHI+), 3484E—4XTT43-0. Je12
Mo, IV = O, 1443E~-1/DL1-0. I271E-JeIN1+0. 3154
H(Z.3) = -0, 13226-5

H(L.4) = O.

H(2.4) = O -

H(3. 4) = -O. |PB0E—-3eXPT4+0, AUTIE-T

Hi4, &) = =0, 4300€-3¢KPT4~0. J10E-4

H(3. 4) = O, 34B4E-2

M 4) = O. L140€=1/DLE~0. 1I00E-TeEN1<0, 3192
M{7,4) =« 0. tJ24E-3

FULL ENVELOPE MODEL OF D RATRIX

D(1.1) = 0.

D¢2.1) = 0.

DU 1) = =0. 41T5E~40kNI #03+0, | PEIE-ToLPTheel+0. P972€-2
0(8. 1) = =0, F442E-TeXNI~0, 2207€+5/7XN 00240, 6E-2
003 1) = =0. I541E=~1eTHL+O, Jt;SEOIIvflod. 49L4E~1
DChe 1) = =0, $830€E+4/XNL+Q. LIEE N/ AN 00240, 3303

0C(7. 1) = =0, @IITE-2/XPT4+0, 10I3E—4

0¢1.2) = A,

0(2.2) « O,

0¢3.2) = -0, T1¥2E-JexPTheedet, 235

Dl4.2) = 0. 404TeLPT4e2 90@

0¢S.2) = 0.2438E~-20KPT4eed-7, 119

D66 2) & ~O, 704K *4/THL 0, BITLE+T7/XINL~L3L. &

0(7.2) = =0, JP2E~4eXPToee3+), 282961

De1.I) « O,

0423 - 0.

0(3.3) = 0. 35138€~2eKPT4-0. 14T0C-3oIPT4eILATLe22-0. 410t
D€4.3) = O, 8@13C€~JeXPT4—0, DAILE-CekPT4dee]-0. 4430€E-1
D€3e3) = O, 1110€~4okPT40¢]-0Q, l?"‘-.’wnﬂ‘l’"‘o- 3499
Debe I = Q. 1347C€+{okPTa~1 2, 47

0(7.3) =« 0. 2049€-1

0¢l.4) = O,

0t 4) = O,

0¢3. 4) = 0. 7A3QeTHI-O, 44bs

0¢4. 43 = -0, J420€-2

0€(%4) = <0, 2UATC*1eTHL+O, 271 4E~ToENL ee2+1 . Jb

DCo. 4) = |, 073 )

B(T.4) = 0. 3327€-2eTHI-0. 4434€-2

D(1.3) = 0O,

0(2.9) = 0.

D43 3) = ~0. J4IE+T/DLI-0, 14BIE+LeLPT44425. @

D4 5) ® 0. [446E+2(ATHLI/DLL ) =0, ¥I40E=( ¢XPT4+24. OF
DE(3.3) « 0. t11@IE+4/DL1-438. 2

DCbe 3) = 0. T43E+4/0L 121454, 0

D(7.3) & O, ¥834/0L1+0. I3M0E~1
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A.3 DETERMINATION OF MODEL ERROR BOUND

The procedure for computation of the error bound on modeling error is
shown in Figure A.3, and a step by step discussion follows.

Step 1: The input to the system is a sinusoidal signal superimposed on a
constant signal. This input is of a specific frequency and of high amplitude,
j.e., the amplitude of the sinusoid should be carefully selected so that the
region of operation of the simplified model remains linear. The amplitudes of
the sinusoid for each input were determined from Ref. 24. These input
amplitudes give the best overall match between the linear and the nonlinear
models of the engine. These amplitudes are as follows:

u(1) = WFMBH 3%

u(2) = AJ K 4

u(l) = CIw 5 degrees
u(4) = RCVV 1 degree
u(5) = BLC 0.2 %

The inputs were excited one at a time according to the procedure. The outputs
of P and Po are sinusoids superimposed over a transient (system
transient), as shown in Figure A.4. Once the transient dies out, the outputs
are sinusoids of constant amplitude. The magnitude of the outputs are
determined by computing the amplitude of the sine waves. The error, e, is
determined by subtracting the output of the plant, v, from the output of the
model, ym, and then computing the magnitudel

Step 2: The bound, §(w), on the model error is given by
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Figure A.3 Procedure for Computing Error Bound, &(w)
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8(w) = (A.6)

Each input when excited, produces errors in all the five outputs, which

determines one column of the § matrix. For example, if u, is
modulated with a sinusoid, it produces

$ = ny] - ym1u / lym

1 W, §,, = ny2 - ymzu / Hymzu.

1 21

65] = uy5 - ym5u / uymsu.
This gives the first column of the & matrix. Similarly, other four inputs
are excited one at a time to determine the other four columns of the &
matrix. To determine the bound at a given frequency, 25 elements of the &
matrix have to be computed.

Step 3: The simplified model has a bandwidth of about § hz. A range of
frequencies from 0 hz (DC) to 9 hz was chosen for computation of the
matrix. The discrete frequencies at which § was computed are 0.1, 0.3,

0.5, 0.7, 0.8, 1., 2., 3., 4.,5., 7., 9. hz.

Step 4: At each frequency, the maximum singular value of the é(w)

matrix is computed. This is denoted by o[é(w)], and is the worst case

bound at that frequency. Figure A.4 illustrates a plot of a against

frequency.
A.4 DISCUSSION

The bound on the model errors determined in this procedure has some
Yimitations. The plant is represented by a simplified nonlinear simulation
and the model is linearized at one flight point. This limits the validity of
the model error bound to only one flight condition. This also does not
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include the errors which arise from the unmodeled nonlinearities and the
linearization of P(s) to produce simplified model Po(s). For a more
general error bound, the plant should be represented by the cycle deck, and
the bound & should be determined at all the representative flight points

in the flight envelope. However, cost is an important consideration in such
an exercise.

There are marked differences between the theoretical curves of Figure A.2
and Figure A.5. The error bound is expected to grow at high frequencies
(Figure A.2b), but as seen in Figure A.4, it is constant. This 1s attributed
to the fact that the plant and the model are of the same order and have
approximately the same A, B, C, and D matrices at 0/0/36. The difference in
the system matrices is that the model is represented by the constant A, 8, C,
and D matrices (Table A.1), whereas the plant Po(s, c*) 1is represented by
the A, B, C, and D matrices which are polynomial functions. The error bound

in this case is a constant. This can be shown using equation A.3 as follows,

P(s) = [I + a(s)] Po(s. c*) (A.7)

where P(s) and Po(s, c*) are of the same order. In reality, a(s)
would be a complicated transfer function of order different from the order of
P(s) or Po(s, c*). In this case it is simply a constant and therefore the

error bound ;(w) is a constant in Figure A.5 as shown by the following

equation,

HP(s) - Po(s, c*)
uPo(s)n

Tim

S -

= l1A(s)It = constant (A.8)

It is expected that if high-frequency dynamics is added to the plant P(s), the

high frequency response of o in Figure A.5 will follow the pattern of
Figure A.2b.

The difference between the two models P(s) and Po(s. c*), causes the
peak at low frequency in Figure A.5. This difference gives rise to different
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dynamic responses. It is expected that if the two models are exactly the same

(no modeling errors), the plot of s should be a constant, i.e., o(w) =0
(constant) = O.

A.5 SUMMARY

A procedure to compute the bound on the modeling errors is developed and
demonstrated on an engine example. The bound is limited to only one flight
condition. For a more general bound, a comprehensive experiment will have to
be run where the plant is represented by the cycle deck and the experiment
conducted at a number of operating points on the flight envelope, with
particular emphasis on the choice of the amplitude of the input signals.
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